BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 18261461)

  • 1. Divalent cations stabilize GroEL under conditions of oxidative stress.
    Melkani GC; Sielaff RL; Zardeneta G; Mendoza JA
    Biochem Biophys Res Commun; 2008 Apr; 368(3):625-30. PubMed ID: 18261461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GroEL interacts transiently with oxidatively inactivated rhodanese facilitating its reactivation.
    Melkani GC; Zardeneta G; Mendoza JA
    Biochem Biophys Res Commun; 2002 Jun; 294(4):893-9. PubMed ID: 12061791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the chaperonin activity of GroEL at heat-shock temperature.
    Melkani GC; Zardeneta G; Mendoza JA
    Int J Biochem Cell Biol; 2005 Jul; 37(7):1375-85. PubMed ID: 15833270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidized GroEL can function as a chaperonin.
    Melkani GC; Zardeneta G; Mendoza JA
    Front Biosci; 2004 Jan; 9():724-31. PubMed ID: 14766403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of oxidized chaperonin GroEL with an unfolded protein at low temperatures.
    Melkani GC; Sielaff R; Zardeneta G; Mendoza JA
    Biosci Rep; 2012 Jun; 32(3):299-303. PubMed ID: 22273181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen peroxide induces the dissociation of GroEL into monomers that can facilitate the reactivation of oxidatively inactivated rhodanese.
    Melkani GC; McNamara C; Zardeneta G; Mendoza JA
    Int J Biochem Cell Biol; 2004 Mar; 36(3):505-18. PubMed ID: 14687928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of divalent cations on encapsulation and release in the GroEL-assisted folding.
    Okuda H; Sakuhana C; Yamamoto R; Kawai R; Mizukami Y; Matsuda K
    Biometals; 2007 Dec; 20(6):903-10. PubMed ID: 17242865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand-induced conformational changes in the apical domain of the chaperonin GroEL.
    Gibbons DL; Horowitz PM
    J Biol Chem; 1996 Jan; 271(1):238-43. PubMed ID: 8550566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protection of GroEL by its methionine residues against oxidation by hydrogen peroxide.
    Melkani GC; Kestetter J; Sielaff R; Zardeneta G; Mendoza JA
    Biochem Biophys Res Commun; 2006 Aug; 347(2):534-9. PubMed ID: 16828704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ATPase activity of GroEL is supported at high temperatures by divalent cations that stabilize its structure.
    Melkani GC; Zardeneta G; Mendoza JA
    Biometals; 2003 Sep; 16(3):479-84. PubMed ID: 12680712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partitioning of rhodanese onto GroEL. Chaperonin binds a reversibly oxidized form derived from the native protein.
    Smith KE; Voziyan PA; Fisher MT
    J Biol Chem; 1998 Oct; 273(44):28677-81. PubMed ID: 9786862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divalent cations can induce the exposure of GroEL hydrophobic surfaces and strengthen GroEL hydrophobic binding interactions. Novel effects of Zn2+ GroEL interactions.
    Brazil BT; Ybarra J; Horowitz PM
    J Biol Chem; 1998 Feb; 273(6):3257-63. PubMed ID: 9452440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle.
    Tehver R; Chen J; Thirumalai D
    J Mol Biol; 2009 Mar; 387(2):390-406. PubMed ID: 19121324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disulfide formation as a probe of folding in GroEL-GroES reveals correct formation of long-range bonds and editing of incorrect short-range ones.
    Park ES; Fenton WA; Horwich AL
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2145-50. PubMed ID: 17283341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tubular biocontainer: metal ion-induced 1D assembly of a molecularly engineered chaperonin.
    Biswas S; Kinbara K; Oya N; Ishii N; Taguchi H; Aida T
    J Am Chem Soc; 2009 Jun; 131(22):7556-7. PubMed ID: 19489642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. alpha-Crystallin facilitates the reactivation of hydrogen peroxide-inactivated rhodanese.
    Del Fierro D; Zardeneta G; Mendoza JA
    Biochem Biophys Res Commun; 2000 Aug; 274(2):461-6. PubMed ID: 10913360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing dynamics and conformational change of the GroEL-GroES complex by 13C NMR spectroscopy.
    Nishida N; Motojima F; Idota M; Fujikawa H; Yoshida M; Shimada I; Kato K
    J Biochem; 2006 Oct; 140(4):591-8. PubMed ID: 16963786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of hydrogen peroxide on the activity and structure of Escherichia coli chaperone GroEL.
    Wang F; Ou WB; Li S; Zhou HM
    Biochemistry (Mosc); 2002 May; 67(5):547-52. PubMed ID: 12059774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concerted ATP-induced allosteric transitions in GroEL facilitate release of protein substrate domains in an all-or-none manner.
    Kipnis Y; Papo N; Haran G; Horovitz A
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3119-24. PubMed ID: 17360617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of mutations in GroES that allow GroEL to function as a single ring.
    Liu H; Kovács E; Lund PA
    FEBS Lett; 2009 Jul; 583(14):2365-71. PubMed ID: 19545569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.