These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 18261734)

  • 21. Numerical simulation of cardiovascular dynamics with left heart failure and in-series pulsatile ventricular assist device.
    Shi Y; Korakianitis T
    Artif Organs; 2006 Dec; 30(12):929-48. PubMed ID: 17181834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical simulation of cardiovascular dynamics with different types of VAD assistance.
    Shi Y; Korakianitis T; Bowles C
    J Biomech; 2007; 40(13):2919-33. PubMed ID: 17433816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor.
    Ahmed SU; Ranganathan P; Pandey A; Sivaraman S
    J Biosci Bioeng; 2010 Jun; 109(6):588-97. PubMed ID: 20471599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stress-sensitive nutrient consumption via steady and non-reversing dynamic shear in continuous-flow rotational bioreactors.
    Belfiore LA; Bonani W; Leoni M; Belfiore CJ
    Biophys Chem; 2009 May; 141(2-3):140-52. PubMed ID: 19261374
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational evaluation of oxygen and shear stress distributions in 3D perfusion culture systems: macro-scale and micro-structured models.
    Cioffi M; Küffer J; Ströbel S; Dubini G; Martin I; Wendt D
    J Biomech; 2008 Oct; 41(14):2918-25. PubMed ID: 18789444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flow modelling within a scaffold under the influence of uni-axial and bi-axial bioreactor rotation.
    Singh H; Teoh SH; Low HT; Hutmacher DW
    J Biotechnol; 2005 Sep; 119(2):181-96. PubMed ID: 16081181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical analysis of engineered cartilage oxygenation: influence of construct thickness and media flow rate.
    Pierre J; Gemmiti CV; Kolambkar YM; Oddou C; Guldberg RE
    Biomech Model Mechanobiol; 2008 Dec; 7(6):497-510. PubMed ID: 17999099
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An experimentally derived stress resultant shell model for heart valve dynamic simulations.
    Kim H; Chandran KB; Sacks MS; Lu J
    Ann Biomed Eng; 2007 Jan; 35(1):30-44. PubMed ID: 17089074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mathematical modelling of fibre-enhanced perfusion inside a tissue-engineering bioreactor.
    Whittaker RJ; Booth R; Dyson R; Bailey C; Parsons Chini L; Naire S; Payvandi S; Rong Z; Woollard H; Cummings LJ; Waters SL; Mawasse L; Chaudhuri JB; Ellis MJ; Michael V; Kuiper NJ; Cartmell S
    J Theor Biol; 2009 Feb; 256(4):533-46. PubMed ID: 19014952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Model-based analysis and design of a microchannel reactor for tissue engineering.
    Mehta K; Linderman JJ
    Biotechnol Bioeng; 2006 Jun; 94(3):596-609. PubMed ID: 16586504
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling anaerobic bioreactor landfills in methanogenic phase: long term and short term behaviors.
    Gholamifard S; Eymard R; Duquennoi C
    Water Res; 2008 Dec; 42(20):5061-71. PubMed ID: 18986669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Windows of operation for bioreactor design for the controlled formation of tissue-engineered arteries.
    Gerontas S; Farid SS; Hoare M
    Biotechnol Prog; 2009; 25(3):842-53. PubMed ID: 19399902
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering of an elastic large muscular vessel wall with pulsatile stimulation in bioreactor.
    Xu ZC; Zhang WJ; Li H; Cui L; Cen L; Zhou GD; Liu W; Cao Y
    Biomaterials; 2008 Apr; 29(10):1464-72. PubMed ID: 18155136
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and characterization of a rotating bed system bioreactor for tissue engineering applications.
    Anton F; Suck K; Diederichs S; Behr L; Hitzmann B; van Griensven M; Scheper T; Kasper C
    Biotechnol Prog; 2008; 24(1):140-7. PubMed ID: 18198883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A mathematical model and computational framework for three-dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a bi-directional flow perfusion bioreactor.
    Shakhawath Hossain M; Bergstrom DJ; Chen XB
    Biotechnol Bioeng; 2015 Dec; 112(12):2601-10. PubMed ID: 26061385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A miniaturized, optically accessible bioreactor for systematic 3D tissue engineering research.
    Laganà M; Raimondi MT
    Biomed Microdevices; 2012 Feb; 14(1):225-34. PubMed ID: 21984034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioengineered three-layered robust and elastic artery using hemodynamically-equivalent pulsatile bioreactor.
    Iwasaki K; Kojima K; Kodama S; Paz AC; Chambers M; Umezu M; Vacanti CA
    Circulation; 2008 Sep; 118(14 Suppl):S52-7. PubMed ID: 18824769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical simulations of blood flow in artificial and natural hearts with fluid-structure interaction.
    Doyle MG; Vergniaud JB; Tavoularis S; Bourgault Y
    Artif Organs; 2008 Nov; 32(11):870-9. PubMed ID: 18959680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tissue growth in a rotating bioreactor. Part II: fluid flow and nutrient transport problems.
    Cummings LJ; Waters SL
    Math Med Biol; 2007 Jun; 24(2):169-208. PubMed ID: 17043081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Process simulation in a mechatronic bioreactor device with speed-regulated motors for growing of three-dimensional cell cultures.
    Mihailova M; Trenev V; Genova P; Konstantinov S
    Ann N Y Acad Sci; 2006 Dec; 1091():470-89. PubMed ID: 17341637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.