These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 18261995)
21. Effect of pyridoxamine (K-163), an inhibitor of advanced glycation end products, on type 2 diabetic nephropathy in KK-A(y)/Ta mice. Tanimoto M; Gohda T; Kaneko S; Hagiwara S; Murakoshi M; Aoki T; Yamada K; Ito T; Matsumoto M; Horikoshi S; Tomino Y Metabolism; 2007 Feb; 56(2):160-7. PubMed ID: 17224327 [TBL] [Abstract][Full Text] [Related]
22. Effects of pyridoxamine (K-163) on glucose intolerance and obesity in high-fat diet C57BL/6J mice. Hagiwara S; Gohda T; Tanimoto M; Ito T; Murakoshi M; Ohara I; Yamazaki T; Matsumoto M; Horikoshi S; Funabiki K; Tomino Y Metabolism; 2009 Jul; 58(7):934-45. PubMed ID: 19427656 [TBL] [Abstract][Full Text] [Related]
23. Pyridoxamine improves functional, structural, and biochemical alterations of peritoneal membranes in uremic peritoneal dialysis rats. Kakuta T; Tanaka R; Satoh Y; Izuhara Y; Inagi R; Nangaku M; Saito A; Miyata T Kidney Int; 2005 Sep; 68(3):1326-36. PubMed ID: 16105068 [TBL] [Abstract][Full Text] [Related]
25. Oxidative stress in diabetes - circulating advanced glycation end products, lipid oxidation and vascular disease. Dias IH; Griffiths HR Ann Clin Biochem; 2014 Mar; 51(Pt 2):125-7. PubMed ID: 24146184 [No Abstract] [Full Text] [Related]
26. Synthesis of a novel radical trapping and carbonyl group trapping anti-AGE agent: a pyridoxamine analogue for inhibiting advanced glycation (AGE) and lipoxidation (ALE) end products. Culbertson SM; Enright GD; Ingold KU Org Lett; 2003 Jul; 5(15):2659-62. PubMed ID: 12868883 [TBL] [Abstract][Full Text] [Related]
27. [New markers of advanced damage caused by oxidative and carbonyl stress]. Kalousová M; Zima T; Tesar V; Stípek S Sb Lek; 2001; 102(4):465-72. PubMed ID: 12448197 [TBL] [Abstract][Full Text] [Related]
29. Pyridoxamine reverts methylglyoxal-induced impairment of survival pathways during heart ischemia. Almeida F; Santos-Silva D; Rodrigues T; Matafome P; Crisóstomo J; Sena C; Gonçalves L; Seiça R Cardiovasc Ther; 2013 Dec; 31(6):e79-85. PubMed ID: 23841818 [TBL] [Abstract][Full Text] [Related]
30. Methylglyoxal induces cellular damage by increasing argpyrimidine accumulation and oxidative DNA damage in human lens epithelial cells. Kim J; Kim NH; Sohn E; Kim CS; Kim JS Biochem Biophys Res Commun; 2010 Jan; 391(1):346-51. PubMed ID: 19913507 [TBL] [Abstract][Full Text] [Related]
31. Advanced glycation end-products and the progress of diabetic vascular complications. Jakus V; Rietbrock N Physiol Res; 2004; 53(2):131-42. PubMed ID: 15046548 [TBL] [Abstract][Full Text] [Related]
32. Increased glyoxalase I levels inhibit accumulation of oxidative stress and an advanced glycation end product in mouse mesangial cells cultured in high glucose. Kim KM; Kim YS; Jung DH; Lee J; Kim JS Exp Cell Res; 2012 Jan; 318(2):152-9. PubMed ID: 22036650 [TBL] [Abstract][Full Text] [Related]
33. Sodium-glucose cotransporter 2-mediated oxidative stress augments advanced glycation end products-induced tubular cell apoptosis. Maeda S; Matsui T; Takeuchi M; Yamagishi S Diabetes Metab Res Rev; 2013 Jul; 29(5):406-12. PubMed ID: 23508966 [TBL] [Abstract][Full Text] [Related]
34. [Effects of telmisartan and pyridoxamine on abdominal aorta vascular remodeling in spontaneously hypertensive rats]. Jiang F; Zhu PL; Zheng WP; Yu HZ; Huang F; Lin F; Lin H; Sun CA Zhonghua Xin Xue Guan Bing Za Zhi; 2011 Jul; 39(7):658-63. PubMed ID: 22088249 [TBL] [Abstract][Full Text] [Related]
35. The Role of Oxidative Stress in Diabetic Neuropathy: Generation of Free Radical Species in the Glycation Reaction and Gene Polymorphisms Encoding Antioxidant Enzymes to Genetic Susceptibility to Diabetic Neuropathy in Population of Type I Diabetic Patients. Babizhayev MA; Strokov IA; Nosikov VV; Savel'yeva EL; Sitnikov VF; Yegorov YE; Lankin VZ Cell Biochem Biophys; 2015 Apr; 71(3):1425-43. PubMed ID: 25427889 [TBL] [Abstract][Full Text] [Related]
36. Advanced glycation end products and its receptor (RAGE) are increased in patients with COPD. Wu L; Ma L; Nicholson LF; Black PN Respir Med; 2011 Mar; 105(3):329-36. PubMed ID: 21112201 [TBL] [Abstract][Full Text] [Related]
37. Advanced-glycation-end-product-cholesterol-aggregated-protein accelerates the proliferation of mesangial cells mediated by transforming-growth-factor-beta 1 receptors and the ERK-MAPK pathway. Hirasawa Y; Sakai T; Ito M; Yoshimura H; Feng Y; Nagamatsu T Eur J Pharmacol; 2011 Dec; 672(1-3):159-68. PubMed ID: 21989075 [TBL] [Abstract][Full Text] [Related]
38. Advanced glycation endproducts: what is their relevance to diabetic complications? Ahmed N; Thornalley PJ Diabetes Obes Metab; 2007 May; 9(3):233-45. PubMed ID: 17391149 [TBL] [Abstract][Full Text] [Related]
39. Food-advanced glycation end products aggravate the diabetic vascular complications via modulating the AGEs/RAGE pathway. Lv X; Lv GH; Dai GY; Sun HM; Xu HQ Chin J Nat Med; 2016 Nov; 14(11):844-855. PubMed ID: 27914528 [TBL] [Abstract][Full Text] [Related]
40. Combined AGE inhibition and ACEi decreases the progression of established diabetic nephropathy in B6 db/db mice. Zheng F; Zeng YJ; Plati AR; Elliot SJ; Berho M; Potier M; Striker LJ; Striker GE Kidney Int; 2006 Aug; 70(3):507-14. PubMed ID: 16775596 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]