BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 18262435)

  • 1. Packing of transmembrane helices in bacteriorhodopsin folding: structure and thermodynamics.
    Chen CC; Wei CC; Sun YC; Chen CM
    J Struct Biol; 2008 May; 162(2):237-47. PubMed ID: 18262435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dual-scale approach toward structure prediction of retinal proteins.
    Chen CC; Chen CM
    J Struct Biol; 2009 Jan; 165(1):37-46. PubMed ID: 19000929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of transmembrane helices of simple polytopic membrane proteins from sequence conservation patterns.
    Park Y; Helms V
    Proteins; 2006 Sep; 64(4):895-905. PubMed ID: 16807902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proline residues in transmembrane alpha helices affect the folding of bacteriorhodopsin.
    Lu H; Marti T; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):437-46. PubMed ID: 11327778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of helix-helix interactions in assembly of the bacteriorhodopsin lattice.
    Isenbarger TA; Krebs MP
    Biochemistry; 1999 Jul; 38(28):9023-30. PubMed ID: 10413475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution prediction of protein helix positions and orientations.
    Li X; Jacobson MP; Friesner RA
    Proteins; 2004 May; 55(2):368-82. PubMed ID: 15048828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An energy-based approach to packing the 7-helix bundle of bacteriorhodopsin.
    Chou KC; Carlacci L; Maggiora GM; Parodi LA; Schulz MW
    Protein Sci; 1992 Jun; 1(6):810-27. PubMed ID: 1304922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural determinants of transmembrane helical proteins.
    Harrington SE; Ben-Tal N
    Structure; 2009 Aug; 17(8):1092-103. PubMed ID: 19679087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetics and stability of transmembrane helix packing: a replica-exchange simulation with a knowledge-based membrane potential.
    Chen Z; Xu Y
    Proteins; 2006 Feb; 62(2):539-52. PubMed ID: 16299775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel approach to computer modeling of seven-helical transmembrane proteins: current progress in the test case of bacteriorhodopsin.
    Nikiforovich GV; Galaktionov S; Balodis J; Marshall GR
    Acta Biochim Pol; 2001; 48(1):53-64. PubMed ID: 11440183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the positioning of the seven transmembrane alpha-helices of bacteriorhodopsin. A molecular simulation study.
    Tuffery P; Etchebest C; Popot JL; Lavery R
    J Mol Biol; 1994 Mar; 236(4):1105-22. PubMed ID: 8120890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure of bacteriorhodopsin at 3.0 A resolution based on electron crystallography: implication of the charge distribution.
    Mitsuoka K; Hirai T; Murata K; Miyazawa A; Kidera A; Kimura Y; Fujiyoshi Y
    J Mol Biol; 1999 Feb; 286(3):861-82. PubMed ID: 10024456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Position of helical kinks in membrane protein crystal structures and the accuracy of computational prediction.
    Hall SE; Roberts K; Vaidehi N
    J Mol Graph Model; 2009; 27(8):944-50. PubMed ID: 19285892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replica exchange Monte-Carlo simulations of helix bundle membrane proteins: rotational parameters of helices.
    Wu HH; Chen CC; Chen CM
    J Comput Aided Mol Des; 2012 Mar; 26(3):363-74. PubMed ID: 22466784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio folding of albumin binding domain from all-atom molecular dynamics simulation.
    Lei H; Duan Y
    J Phys Chem B; 2007 May; 111(19):5458-63. PubMed ID: 17458992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biophysical study of integral membrane protein folding.
    Hunt JF; Earnest TN; Bousché O; Kalghatgi K; Reilly K; Horváth C; Rothschild KJ; Engelman DM
    Biochemistry; 1997 Dec; 36(49):15156-76. PubMed ID: 9398244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Spatial structure of bacterioopsin 87-136 fragment].
    Maslennikov IV; Lugovskoĭ AA; Arsen'ev AS; Chikin LD; Ivanov VT
    Bioorg Khim; 1997 Oct; 23(10):771-82. PubMed ID: 9490612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The folding thermodynamics and kinetics of crambin using an all-atom Monte Carlo simulation.
    Shimada J; Kussell EL; Shakhnovich EI
    J Mol Biol; 2001 Apr; 308(1):79-95. PubMed ID: 11302709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2.
    Yoshimura K; Kouyama T
    J Mol Biol; 2008 Feb; 375(5):1267-81. PubMed ID: 18082767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.