These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 18263043)

  • 1. Rapid, safe, and incremental learning of navigation strategies.
    Millan JR
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(3):408-20. PubMed ID: 18263043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning sensor-based navigation of a real mobile robot in unknown worlds.
    Araujo R; de Almeida AT
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(2):164-78. PubMed ID: 18252290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time map building and navigation for autonomous robots in unknown environments.
    Oriolo G; Ulivi G; Vendittelli M
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(3):316-33. PubMed ID: 18255950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributed Non-Communicating Multi-Robot Collision Avoidance via Map-Based Deep Reinforcement Learning.
    Chen G; Yao S; Ma J; Pan L; Chen Y; Xu P; Ji J; Chen X
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32867080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive navigation under a fuzzy rules-based scheme and reinforcement learning for mobile robots.
    López-Lozada E; Rubio-Espino E; Sossa-Azuela JH; Ponce-Ponce VH
    PeerJ Comput Sci; 2021; 7():e556. PubMed ID: 34150998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SLAM algorithm applied to robotics assistance for navigation in unknown environments.
    Cheein FA; Lopez N; Soria CM; di Sciascio FA; Pereira FL; Carelli R
    J Neuroeng Rehabil; 2010 Feb; 7():10. PubMed ID: 20163735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation.
    Almasri M; Elleithy K; Alajlan A
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26712766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An unsupervised neural network for low-level control of a wheeled mobile robot: noise resistance, stability, and hardware implementation.
    Gaudiano P; Zalama E; Coronado JL
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(3):485-96. PubMed ID: 18263049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On learning navigation behaviors for small mobile robots with reservoir computing architectures.
    Antonelo EA; Schrauwen B
    IEEE Trans Neural Netw Learn Syst; 2015 Apr; 26(4):763-80. PubMed ID: 25794381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autonomous Navigation by Mobile Robot with Sensor Fusion Based on Deep Reinforcement Learning.
    Ou Y; Cai Y; Sun Y; Qin T
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robot control with biological cells.
    Tsuda S; Zauner KP; Gunji YP
    Biosystems; 2007 Feb; 87(2-3):215-23. PubMed ID: 17188804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobile robot navigation modulated by artificial emotions.
    Lee-Johnson CP; Carnegie DA
    IEEE Trans Syst Man Cybern B Cybern; 2010 Apr; 40(2):469-80. PubMed ID: 19822475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive navigation in dynamic environment using a multisensor predictor.
    Song KT; Chang CC
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(6):870-80. PubMed ID: 18252364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Goal-directed autonomous navigation of mobile robot based on the principle of neuromodulation.
    Wang D; Si W; Luo Y; Wang H; Ma T
    Network; 2019; 30(1-4):79-106. PubMed ID: 31564179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensorimotor coordination in a "baby" robot: learning about objects through grasping.
    Natale L; Orabona F; Metta G; Sandini G
    Prog Brain Res; 2007; 164():403-24. PubMed ID: 17920444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparison Study between Traditional and Deep-Reinforcement-Learning-Based Algorithms for Indoor Autonomous Navigation in Dynamic Scenarios.
    Arce D; Solano J; Beltrán C
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the Navigation Method for a Snake Robot Based on the Kinematics Model with MEMS IMU.
    Zhao X; Dou L; Su Z; Liu N
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29547515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Navigation in Unknown Dynamic Environments Based on Deep Reinforcement Learning.
    Zeng J; Ju R; Qin L; Hu Y; Yin Q; Hu C
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31491927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Social Robot Navigation Tasks: Combining Machine Learning Techniques and Social Force Model.
    Gil Ó; Garrell A; Sanfeliu A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobile robot trajectory tracking using noisy RSS measurements: an RFID approach.
    Miah MS; Gueaieb W
    ISA Trans; 2014 Mar; 53(2):433-43. PubMed ID: 24268746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.