These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

22 related articles for article (PubMed ID: 18263074)

  • 1. Robot Grasp Planning: A Learning from Demonstration-Based Approach.
    Wang K; Fan Y; Sakuma I
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Contact Stiffness of Soft Fingertips for Grasping Applications.
    Ma X; Chen L; Gao Y; Liu D; Wang B
    Biomimetics (Basel); 2023 Sep; 8(5):. PubMed ID: 37754149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tactile Transfer Learning and Object Recognition With a Multifingered Hand Using Morphology Specific Convolutional Neural Networks.
    Funabashi S; Yan G; Hongyi F; Schmitz A; Jamone L; Ogata T; Sugano S
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):7587-7601. PubMed ID: 36327180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locomotion as manipulation with ReachBot.
    Chen TG; Newdick S; Di J; Bosio C; Ongole N; LapĂ´tre M; Pavone M; Cutkosky MR
    Sci Robot; 2024 Apr; 9(89):eadi9762. PubMed ID: 38630805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endoskeleton Soft Multi-Fingered Hand with Variable Stiffness.
    Pan D; Yan P; Li Y; Huang H; Li B; Liu H
    Soft Robot; 2024 Apr; ():. PubMed ID: 38634786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Survey of Multifingered Robotic Manipulation: Biological Results, Structural Evolvements, and Learning Methods.
    Li Y; Wang P; Li R; Tao M; Liu Z; Qiao H
    Front Neurorobot; 2022; 16():843267. PubMed ID: 35574228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic grasp planning for visual-servo controlled robotic manipulators.
    Janabi-Sharifi F; Wilson WJ
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(5):693-711. PubMed ID: 18255988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of grasps by robot hands.
    Zhang Y; Gruver WA; Li J; Zhang Q
    IEEE Trans Syst Man Cybern B Cybern; 2001; 31(3):436-44. PubMed ID: 18244809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general dynamic force distribution algorithm for multifingered grasping.
    Zuo BR; Qian WH
    IEEE Trans Syst Man Cybern B Cybern; 2000; 30(1):185-92. PubMed ID: 18244741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robot Intelligent Grasp of Unknown Objects Based on Multi-Sensor Information.
    Ji SQ; Huang MB; Huang HP
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30986985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting Robot Hand Compliance and Environmental Constraints for Edge Grasps.
    Bimbo J; Turco E; Ghazaei Ardakani M; Pozzi M; Salvietti G; Bo V; Malvezzi M; Prattichizzo D
    Front Robot AI; 2019; 6():135. PubMed ID: 33501150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic grasp planning of multifingered robot hands based on asymptotic stability.
    Guo G; Gruver WA
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(5):764-8. PubMed ID: 18263074
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.