These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65 related articles for article (PubMed ID: 18263101)
1. Toward efficient multiple molecular sequence alignment: a system of genetic algorithm and dynamic programming. Zhang C; Wong AC IEEE Trans Syst Man Cybern B Cybern; 1997; 27(6):918-32. PubMed ID: 18263101 [TBL] [Abstract][Full Text] [Related]
2. A genetic algorithm for multiple molecular sequence alignment. Zhang C; Wong AK Comput Appl Biosci; 1997 Dec; 13(6):565-81. PubMed ID: 9475984 [TBL] [Abstract][Full Text] [Related]
3. A space-efficient algorithm for the constrained pairwise sequence alignment problem. He D; Arslan AN Genome Inform; 2005; 16(2):237-46. PubMed ID: 16901106 [TBL] [Abstract][Full Text] [Related]
4. Automatic discovery of sub-molecular sequence domains in multi-aligned sequences: a dynamic programming algorithm for multiple alignment segmentation. Xing EP; Wolf DM; Dubchak I; Spengler S; Zorn M; Muchnik I; Kulikowski C J Theor Biol; 2001 Sep; 212(2):129-39. PubMed ID: 11531380 [TBL] [Abstract][Full Text] [Related]
6. Faster algorithms for optimal multiple sequence alignment based on pairwise comparisons. Bilu Y; Agarwal PK; Kolodny R IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(4):408-22. PubMed ID: 17085849 [TBL] [Abstract][Full Text] [Related]
7. Finding the biologically optimal alignment of multiple sequences. Mamitsuka H Artif Intell Med; 2005; 35(1-2):9-18. PubMed ID: 16051477 [TBL] [Abstract][Full Text] [Related]
8. Using iterative methods for global multiple sequence alignment. Mount DW Cold Spring Harb Protoc; 2009 Jul; 2009(7):pdb.top44. PubMed ID: 20147225 [TBL] [Abstract][Full Text] [Related]
9. Fast, optimal alignment of three sequences using linear gap costs. Powell DR; Allison L; Dix TI J Theor Biol; 2000 Dec; 207(3):325-36. PubMed ID: 11082303 [TBL] [Abstract][Full Text] [Related]
10. CAALIGN: a program for pairwise and multiple protein-structure alignment. Oldfield TJ Acta Crystallogr D Biol Crystallogr; 2007 Apr; 63(Pt 4):514-25. PubMed ID: 17372357 [TBL] [Abstract][Full Text] [Related]
11. A simple genetic algorithm for multiple sequence alignment. Gondro C; Kinghorn BP Genet Mol Res; 2007 Oct; 6(4):964-82. PubMed ID: 18058716 [TBL] [Abstract][Full Text] [Related]
12. Lifting prediction to alignment of RNA pseudoknots. Möhl M; Will S; Backofen R J Comput Biol; 2010 Mar; 17(3):429-42. PubMed ID: 20377455 [TBL] [Abstract][Full Text] [Related]
13. CLAGen: a tool for clustering and annotating gene sequences using a suffix tree algorithm. Han Si; Lee SG; Kim KH; Choi CJ; Kim YH; Hwang KS Biosystems; 2006 Jun; 84(3):175-82. PubMed ID: 16384634 [TBL] [Abstract][Full Text] [Related]
14. Reconfigurable systems for sequence alignment and for general dynamic programming. Jacobi RP; Ayala-Rincón M; Carvalho LG; Llanos CH; Hartenstein RW Genet Mol Res; 2005 Sep; 4(3):543-52. PubMed ID: 16342039 [TBL] [Abstract][Full Text] [Related]
15. Using progressive methods for global multiple sequence alignment. Mount DW Cold Spring Harb Protoc; 2009 Jul; 2009(7):pdb.top43. PubMed ID: 20147224 [TBL] [Abstract][Full Text] [Related]
16. A min-cut algorithm for the consistency problem in multiple sequence alignment. Corel E; Pitschi F; Morgenstern B Bioinformatics; 2010 Apr; 26(8):1015-21. PubMed ID: 20189940 [TBL] [Abstract][Full Text] [Related]
17. Novel use of a genetic algorithm for protein structure prediction: searching template and sequence alignment space. Contreras-Moreira B; Fitzjohn PW; Offman M; Smith GR; Bates PA Proteins; 2003; 53 Suppl 6():424-9. PubMed ID: 14579331 [TBL] [Abstract][Full Text] [Related]
19. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space. Fromer M; Yanover C Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998 [TBL] [Abstract][Full Text] [Related]