These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 18263125)
1. Numerical analysis of the acoustic signature of a surface-breaking crack. Ahn VS; Harris JG; Achenbach JD IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(1):112-8. PubMed ID: 18263125 [TBL] [Abstract][Full Text] [Related]
2. Wave analysis of the acoustic material signature for the line focus microscope. Achenbach JD; Ahn VS; Harris JG IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(4):380-7. PubMed ID: 18267599 [TBL] [Abstract][Full Text] [Related]
3. Effect of periodic surface roughness on V(z) curves for the line-focus acoustic microscope. Li ZL IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(6):680-6. PubMed ID: 18263234 [TBL] [Abstract][Full Text] [Related]
4. Effects of sensor locations on air-coupled surface wave transmission measurements across a surface-breaking crack. Kee SH; Zhu J IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):427-36. PubMed ID: 21342828 [TBL] [Abstract][Full Text] [Related]
5. Nonlinear acoustic scattering by a partially closed surface-breaking crack. Pecorari C; Poznić M J Acoust Soc Am; 2005 Feb; 117(2):592-600. PubMed ID: 15759680 [TBL] [Abstract][Full Text] [Related]
6. Mechanical characterization of sintered piezo-electric ceramic material using scanning acoustic microscope. Habib A; Shelke A; Vogel M; Pietsch U; Jiang X; Kundu T Ultrasonics; 2012 Dec; 52(8):989-95. PubMed ID: 22989949 [TBL] [Abstract][Full Text] [Related]
7. Perfectly matched layers for frequency-domain integral equation acoustic scattering problems. Alles EJ; van Dongen KW IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1077-86. PubMed ID: 21622063 [TBL] [Abstract][Full Text] [Related]
8. A quantitative acoustic microscope with multiple detection modes. Weaver JR; Daft CW; Briggs GD IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(5):554-60. PubMed ID: 18290233 [TBL] [Abstract][Full Text] [Related]
9. Assessment of Reinforced Concrete Surface Breaking Crack Using Rayleigh Wave Measurement. Lee FW; Chai HK; Lim KS Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26959028 [TBL] [Abstract][Full Text] [Related]
10. Finite element analysis of Rayleigh wave interaction with finite-size, surface-breaking cracks. Hassan W; Veronesi W Ultrasonics; 2003 Jan; 41(1):41-52. PubMed ID: 12464411 [TBL] [Abstract][Full Text] [Related]
11. Boundary integral equations in elastodynamics of interface cracks. Menshykov OV; Guz IA; Menshykov VA Philos Trans A Math Phys Eng Sci; 2008 May; 366(1871):1835-9. PubMed ID: 18218600 [TBL] [Abstract][Full Text] [Related]
12. Using air-coupled sensors to determine the depth of a surface-breaking crack in concrete. Kee SH; Zhu J J Acoust Soc Am; 2010 Mar; 127(3):1279-87. PubMed ID: 20329827 [TBL] [Abstract][Full Text] [Related]
13. Fundamental solutions and dual boundary element methods for fracture in plane Cosserat elasticity. Atroshchenko E; Bordas SP Proc Math Phys Eng Sci; 2015 Jul; 471(2179):20150216. PubMed ID: 26345089 [TBL] [Abstract][Full Text] [Related]
14. An iterative method to solve acoustic scattering problems using a boundary integral equation. Rao SM J Acoust Soc Am; 2011 Oct; 130(4):1792-8. PubMed ID: 21973332 [TBL] [Abstract][Full Text] [Related]
15. Ultrasonic surface crack characterization on complex geometries using surface waves. Masserey B; Aebi L; Mazza E Ultrasonics; 2006 Dec; 44 Suppl 1():e957-61. PubMed ID: 16797633 [TBL] [Abstract][Full Text] [Related]