These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 18263162)

  • 1. Theoretical study on the static performance of piezoelectric ceramic-polymer composites with 2-2 connectivity.
    Cao W; Zhang QM; Cross LE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(2):103-9. PubMed ID: 18263162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling 1-3 composite piezoelectrics: hydrostatic response.
    Smith WA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(1):41-9. PubMed ID: 18263155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A; Collins G; Arinzeh TL
    Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, fabrication, and properties of 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution.
    Dongyu X; Xin C; Banerjee S; Shifeng H
    J Appl Phys; 2014 Dec; 116(24):244103. PubMed ID: 25565725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromechanical properties of lead zirconate titanate piezoceramics under the influence of mechanical stresses.
    Zhang QM; Zhao J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1518-26. PubMed ID: 18244349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexural vibration analyses of piezoelectric ceramic tubes with mass loads in ultrasonic actuators.
    Zhang H; Zhang SY; Wang TH
    Ultrasonics; 2007 Dec; 47(1-4):82-9. PubMed ID: 17869319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the radial composite piezoelectric ceramic transducer in radial vibration.
    Lin S
    Ultrasonics; 2007 Mar; 46(1):51-9. PubMed ID: 17166538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piezoelectric fiber-composite-based cantilever sensor for electric-field-induced strain measurement in soft electroactive polymer.
    Chen Q; Sun Y; Qin L; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Oct; 60(10):2142-53. PubMed ID: 24081263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of boundary conditions and sample aspect ratio on apparent d33 piezoelectric coefficient determined by direct quasistatic method.
    Barzegar A; Damjanovic D; Setter N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Mar; 51(3):262-70. PubMed ID: 15128212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Barium titanate-polymer composites produced via directional freezing.
    Gorzkowski EP; Pan MJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1613-6. PubMed ID: 19686976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superior piezoelectric composite films: taking advantage of carbon nanomaterials.
    Saber N; Araby S; Meng Q; Hsu HY; Yan C; Azari S; Lee SH; Xu Y; Ma J; Yu S
    Nanotechnology; 2014 Jan; 25(4):045501. PubMed ID: 24398819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental investigation of alternative pre-stress components for a 3-1 connectivity multilayer piezoelectric-polymer composite ultrasonic transducer.
    Robertson D; Cochran S
    Ultrasonics; 2002 May; 40(1-8):913-9. PubMed ID: 12160069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer-derived ceramic composite fibers with aligned pristine multiwalled carbon nanotubes.
    Sarkar S; Zou J; Liu J; Xu C; An L; Zhai L
    ACS Appl Mater Interfaces; 2010 Apr; 2(4):1150-6. PubMed ID: 20423134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of highly loaded 0-3 piezoelectric composites using a matrix method.
    Levassort F; Lethiecq M; Millar C; Pourcelot L
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(6):1497-505. PubMed ID: 18249997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications.
    Chan HW; Unsworth J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(4):434-41. PubMed ID: 18285003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D optical printing of piezoelectric nanoparticle-polymer composite materials.
    Kim K; Zhu W; Qu X; Aaronson C; McCall WR; Chen S; Sirbuly DJ
    ACS Nano; 2014 Oct; 8(10):9799-806. PubMed ID: 25046646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From micro to nano: properties and potential applications of micro- and nano-filled polymer ceramic composites in microsystem technology.
    Hanemann T; Boehm J; Henzi P; Honnef K; Litfin K; Ritzhaupt-Kleissl E; Hausselt J
    IEE Proc Nanobiotechnol; 2004 Aug; 151(4):167-72. PubMed ID: 16475863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Researching on resonance characteristics influenced by the structure parameters of 1-3-2 piezocomposites plate.
    Li L; Qin L; Wang LK; Wan YY; Sun BS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):946-51. PubMed ID: 18519193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piezoelectric and pyroelectric properties of PZT/P(VDF-TrFE) composites with constituent phases poled in parallel or antiparallel directions.
    Ng KL; Chan HL; Choy CL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1308-15. PubMed ID: 18238676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1-3 connectivity piezoelectric ceramic-polymer composite transducers made with viscous polymer processing for high frequency ultrasound.
    Abrar A; Zhang D; Su B; Button TW; Kirk KJ; Cochran S
    Ultrasonics; 2004 Apr; 42(1-9):479-84. PubMed ID: 15047332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.