These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 18263180)

  • 1. Pure-mode loci in piezoelectric plate resonators: application to materials evaluation in class 4 mm.
    Kosinski JA; Lu Y; Ballato A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(3):258-64. PubMed ID: 18263180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measured properties of doubly rotated dilithium tetraborate (Li(2)B(4)BO(7)) resonators and transducers.
    Kosinski JA; Ballato A; Lu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(2):154-61. PubMed ID: 18263169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental measurement of the electroelastic effect in thickness-mode langasite resonators.
    Zhang H; Turner J; Yang J; Kosinski J; Bao Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):970-4. PubMed ID: 23661131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric properties of an embedded piezoelectric layer.
    Kohler B; Stauch G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(5):740-8. PubMed ID: 18263262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A perturbation method for finite element modeling of piezoelectric vibrations in quartz plate resonators.
    Yong YK; Zhang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):551-62. PubMed ID: 18263220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in high-Q piezoelectric resonator materials and devices.
    Ballato A; Gualtieri JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(6):834-44. PubMed ID: 18263273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled mode theory for nonlinear piezoelectric plate vibrations.
    Li X; Jiang W; Shui Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):800-5. PubMed ID: 18244231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of electromechanical coupling factors of low Q piezoelectric resonators operating in stiffened modes.
    San Emeterio JL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(1):108-13. PubMed ID: 18244108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral Field Excitation of Thickness Longitudinal Mode and Shear Mode With ZnO Based on Solidly Mounted Resonator.
    Meng SH; Huang AC; Chen YC; Yuan C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 May; 66(5):1014-1021. PubMed ID: 30843829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An accurate method for the determination of complex coefficients of single crystal piezoelectric resonators II: design of measurement and experiments.
    Du XH; Wang QM; Uchino K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Feb; 51(2):238-48. PubMed ID: 15055814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy trapping in high-frequency vibrations of piezoelectric plates with partial mass layers under lateral electric field excitation.
    Liu B; Jiang Q; Xie H; Yang J
    Ultrasonics; 2011 Apr; 51(3):376-81. PubMed ID: 21145572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical study of dual-mode thin film bulk acoustic resonators (FBARs) based on ZnO and AlN films with tilted c-axis orientation.
    Qin L; Chen Q; Cheng H; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1840-53. PubMed ID: 20679013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode-selective acoustic spectroscopy of trigonal piezoelectric crystals.
    Johnson WL; Martino CF; Kim SA; Heyliger PR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):1133-42. PubMed ID: 18519221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Piezoelectric coupling factor calculations for plates of langatate driven in simple thickness modes by lateral-field-excitation.
    Khan A; Ballato A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jul; 49(7):922-8. PubMed ID: 12152946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrode-shaping for the excitation and detection of permitted arbitrary modes in arbitrary geometries in piezoelectric resonators.
    Pulskamp JS; Bedair SS; Polcawich RG; Smith GL; Martin J; Power B; Bhave SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):1043-60. PubMed ID: 22622990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A normal mode expansion for piezoelectric plates and certain of its applications.
    Peach RC
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(5):593-611. PubMed ID: 18290192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mode excitation efficiency for contour vibrations of piezoelectric resonators.
    Krushynska A; Meleshko V; Ma CC; Huang YH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2222-38. PubMed ID: 21989886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An accurate method for the determination of complex coefficients of single crystal piezoelectric resonators I: theory.
    Du XH; Wang QM; Uchino K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Feb; 51(2):227-37. PubMed ID: 15055813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling 1-3 composite piezoelectrics: thickness-mode oscillations.
    Smith WA; Auld BA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(1):40-7. PubMed ID: 18267555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of elastic, dielectric, and piezoelectric constants in piezoceramic disks.
    Perez N; Andrade MA; Buiochi F; Adamowski JC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2772-83. PubMed ID: 21156373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.