These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 18263186)

  • 1. Frequency- and time-domain analysis of the transient resonance scattering resulting from the interaction of a sound pulse with submerged elastic shells.
    Gaunaurd GC; Strifors HC
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(4):313-24. PubMed ID: 18263186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic scattering characteristics of a thick-walled orthotropic cylindrical shell at oblique incidence.
    Hasheminejad SM; Rajabi M
    Ultrasonics; 2007 Dec; 47(1-4):32-48. PubMed ID: 17669458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal processing of the echo signatures returned by submerged shells insonified by dolphin "clicks:" active classification.
    Gaunaurd GC; Brill D; Huang H; Moore PW; Strifors HC
    J Acoust Soc Am; 1998 Mar; 103(3):1547-57. PubMed ID: 9514018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictions and measurements of sound transmission through a periodic array of elastic shells in air.
    Krynkin A; Umnova O; Yung Boon Chong A; Taherzadeh S; Attenborough K
    J Acoust Soc Am; 2010 Dec; 128(6):3496-506. PubMed ID: 21218882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of a plane progressive sound wave with a functionally graded spherical shell.
    Hasheminejad SM; Maleki M
    Ultrasonics; 2006 Dec; 45(1-4):165-77. PubMed ID: 17011008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized theory of resonance excitation by sound scattering from an elastic spherical shell in a nonviscous fluid.
    Mitri FG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1781-90. PubMed ID: 22899124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding.
    Rajabi M; Hasheminejad SM
    Ultrasonics; 2009 Dec; 49(8):682-95. PubMed ID: 19586650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calibration of broadband active acoustic systems using a single standard spherical target.
    Stanton TK; Chu D
    J Acoust Soc Am; 2008 Jul; 124(1):128-36. PubMed ID: 18646960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tank measurements of scattering from a resin-filled fiberglass spherical shell with internal flaws.
    Tesei A; Guerrini P; Zampolli M
    J Acoust Soc Am; 2008 Aug; 124(2):827-40. PubMed ID: 18681575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systematic study of water-filled submerged elastic spherical shells and the resolution of elastic- and water-included resonances.
    Werby MF; Uberall H
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):896-905. PubMed ID: 12243177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolating scattering resonances of an air-filled spherical shell using iterative, single-channel time reversal.
    Waters ZJ; Dzikowicz BR; Simpson HJ
    J Acoust Soc Am; 2012 Jan; 131(1):318-26. PubMed ID: 22280594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface wave conversion analysis on a lengthwise soldered circular cylindrical shell.
    Baillard A; Chiumia J; Décultot D; Maze G; Klauson A; Metsaveer J
    J Acoust Soc Am; 2008 Oct; 124(4):2061-7. PubMed ID: 19062846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance scattering of elastic waves by an elastic inclusion in an elastic matrix. Numerical calculations.
    Gaunaurd GC; Wertman WH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(5):628-36. PubMed ID: 18290195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scattering of a pulsed wave by a sphere with an eccentric spherical inclusion.
    Vervelidou F; Chrissoulidis D
    J Opt Soc Am A Opt Image Sci Vis; 2012 Apr; 29(4):605-16. PubMed ID: 22472840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of a cylindrical target buried in a thin sand-water mixture using acoustic spectra.
    Décultot D; Liétard R; Maze G
    J Acoust Soc Am; 2010 Mar; 127(3):1328-34. PubMed ID: 20329832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-frequency analysis of the bistatic acoustic scattering from a spherical elastic shell.
    Anderson SD; Sabra KG; Zakharia ME; Sessarego JP
    J Acoust Soc Am; 2012 Jan; 131(1):164-73. PubMed ID: 22280581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of a high-order Bessel beam with a submerged spherical ultrasound contrast agent shell - Scattering theory.
    Mitri FG
    Ultrasonics; 2010 Mar; 50(3):387-96. PubMed ID: 19833370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplitude-modulated acoustic radiation force experienced by elastic and viscoelastic spherical shells in progressive waves.
    Mitri FG; Fellah ZE
    Ultrasonics; 2006 Jul; 44(3):287-96. PubMed ID: 16677678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inversion for a moving spherical target's positional, structural, and speed parameters.
    Fawcett JA; Dosso SE
    J Acoust Soc Am; 2013 Jul; 134(1):67-76. PubMed ID: 23862785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Space-time-wave number-frequency Z(x, t, k, f) analysis of SAW generation on fluid filled cylindrical shells.
    Martinez L; Morvan B; Izbicki JL
    Ultrasonics; 2004 Apr; 42(1-9):383-9. PubMed ID: 15047316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.