These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 18263220)

  • 1. A perturbation method for finite element modeling of piezoelectric vibrations in quartz plate resonators.
    Yong YK; Zhang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):551-62. PubMed ID: 18263220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical algorithms and results for SC-cut quartz plates vibrating at the third harmonic overtone of thickness shear.
    Yong YK; Zhang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(5):685-93. PubMed ID: 18263256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overtone frequency spectra for x3-dependent modes in AT-cut quartz resonators.
    Zhu J; Chen W; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Apr; 60(4):858-63. PubMed ID: 23549548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forced vibrations of SC-cut quartz crystal rectangular plates with partial electrodes by the Lee plate equations.
    Wu R; Wang W; Chen G; Du J; Ma T; Wang J
    Ultrasonics; 2016 Feb; 65():338-44. PubMed ID: 26433435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory and experimental verifications of the resonator Q and equivalent electrical parameters due to viscoelastic and mounting supports losses.
    Yong YK; Patel MS; Tanaka M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1831-9. PubMed ID: 20679012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analysis of thickness-shear vibrations of doubly-rotated quartz crystal plates with the corrected first-order Mindlin plate equations.
    Du J; Wang W; Chen G; Wu R; Huang D; Ma T; Wang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2371-80. PubMed ID: 24158292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acceleration sensitivity of crystal resonators affected by the mass and location of electrodes.
    Lee PY; Guo X
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(4):358-65. PubMed ID: 18267596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The calculation of electrical parameters of AT-cut quartz crystal resonators with the consideration of material viscosity.
    Wang J; Zhao W; Du J; Hu Y
    Ultrasonics; 2011 Jan; 51(1):65-70. PubMed ID: 20594568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass-frequency influence surface, mode shapes, and frequency spectrum of a rectangular AT-cut quartz plate.
    Yong YK; Stewart JT
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(1):67-73. PubMed ID: 18267559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fifth-order overtone vibrations of quartz crystal plates with corrected higher-order Mindlin plate equations.
    Wang J; Wu R; Yang L; Du J; Ma T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Oct; 59(10):2278-91. PubMed ID: 23143577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dedicated finite elements for electrode thin films on quartz resonators.
    Srivastava SA; Yong YK; Tanaka M; Imai T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1686-97. PubMed ID: 18986913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The determination of electrical parameters of quartz crystal resonators with the consideration of dissipation.
    Wang J; Zhao W; Du J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e869-73. PubMed ID: 16843512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of air resistance on AT-cut quartz thickness-shear resonators.
    Chen Y; Wang J; Du J; Zhang W; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):402-7. PubMed ID: 23357914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design analysis of miniature quartz resonator using two-dimensional finite element model.
    Huang ZG; Chen ZY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jun; 58(6):1145-54. PubMed ID: 21693396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analysis of nonlinear vibrations of coupled thickness-shear and flexural modes of quartz crystal plates with the homotopy analysis method.
    Wu R; Wang J; Du J; Huang D; Yan W; Hu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):30-9. PubMed ID: 22293733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the accuracy of Mindlin plate predictions for the frequency-temperature behavior of resonant modes in AT- and SC-cut quartz plates.
    Yong YK; Wang J; Imai T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):1-13. PubMed ID: 18238393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element simulation of piezoelectric transformers.
    Tsuchiya T; Kagawa Y; Wakatsuki N; Okamura H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jul; 48(4):873-8. PubMed ID: 11477778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Original 2-D Analytical Model for Investigating Coupled Vibrations of Finite Piezoelectric Resonators.
    Ding W; Bavencoffe M; Lethiecq M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Feb; 69(2):854-862. PubMed ID: 34727032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correction factors of the Mindlin plate equations with the consideration of electrodes.
    Du J; Chen G; Wang W; Wu R; Ma T; Wang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Oct; 59(10):2352-8. PubMed ID: 23143585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element simulations of thin-film composite BAW resonators.
    Makkonen T; Holappa A; Ellä J; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Sep; 48(5):1241-58. PubMed ID: 11570749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.