These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 18263220)

  • 21. Frequency spectra of AT-cut quartz plates with electrodes of unequal thickness.
    Wang J; Hu Y; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1146-51. PubMed ID: 20442025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the acceleration sensitivity and its active reduction by edge electrodes in AT-cut quartz resonators.
    Chen J; Yong YK; Kubena R; Kirby D; Chang D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1104-13. PubMed ID: 26067045
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modal analysis of practical quartz resonators using finite element method.
    Yang L; Vitchev N; Yu Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):292-8. PubMed ID: 20178895
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulations of piezoelectric Lamb wave delay lines using a finite element method.
    Friedrich W; Lerch R; Prestele K; Soldner R
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(3):248-54. PubMed ID: 18285038
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lee plate equations for electroded quartz crystal plates with the consideration of electrode density and stiffness.
    Wang J; Chen G; Du J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):503-7. PubMed ID: 18334357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of unequal electrode pairs on an x-strip thickness-shear mode multi-channel quartz crystal microbalance.
    Zhao Z; Qian Z; Wang B
    Ultrasonics; 2016 Dec; 72():73-9. PubMed ID: 27484997
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupled mode theory for nonlinear piezoelectric plate vibrations.
    Li X; Jiang W; Shui Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):800-5. PubMed ID: 18244231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulation of piezoelectric devices by two- and three-dimensional finite elements.
    Lerch R
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(3):233-47. PubMed ID: 18285037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulation of piezoelectric excitation of guided waves using waveguide finite elements.
    Loveday PW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2038-45. PubMed ID: 18986900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling of piezoelectric transducers with combined pseudospectral and finite-difference methods.
    Filoux E; Callé S; Certon D; Lethiecq M; Levassort F
    J Acoust Soc Am; 2008 Jun; 123(6):4165-73. PubMed ID: 18537368
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characteristics of a Lagrangian, high-frequency plate element for the static temperature behavior of low-frequency quartz resonators.
    Yong YK
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(6):788-99. PubMed ID: 18290216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Free and forced vibrations of SC-cut quartz crystal rectangular plates with the first-order Mindlin plate equations.
    Wu R; Wang W; Chen G; Chen H; Ma T; Du J; Wang J
    Ultrasonics; 2017 Jan; 73():96-106. PubMed ID: 27623522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resonances and energy trapping in AT-cut quartz resonators operating with fast shear modes driven by lateral electric fields produced by surface electrodes.
    Ma T; Wang J; Du J; Yang J
    Ultrasonics; 2015 May; 59():14-20. PubMed ID: 25660411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy trapping in high-frequency vibrations of piezoelectric plates with partial mass layers under lateral electric field excitation.
    Liu B; Jiang Q; Xie H; Yang J
    Ultrasonics; 2011 Apr; 51(3):376-81. PubMed ID: 21145572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A FEM-based method using harmonic overtones to determine the effective elastic, dielectric, and piezoelectric parameters of freely vibrating thick piezoelectric disks.
    Jonsson UG; Andersson BM; Lindahl OA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):243-55. PubMed ID: 23287929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulation of Nonlinear Resonance, Amplitude-Frequency, and Harmonic Generation Effects in SAW and BAW Devices.
    Pang X; Yong YK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):422-430. PubMed ID: 31603776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thickness-shear mode shapes and mass-frequency influence surface of a circular and electroded AT-cut quartz resonator.
    Yong YK; Stewart JT; Detaint J; Zarka A; Capelle B; Zheng Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(5):609-17. PubMed ID: 18267672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of electromagnetic radiation on the Q of quartz resonators.
    Yong YK; Patel M; Vig J; Ballato A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):353-60. PubMed ID: 19251522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental measurements and finite element analysis of the coupled vibrational characteristics of piezoelectric shells.
    Huang YH; Ma CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):785-98. PubMed ID: 22547289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Five-mode frequency spectra of x3-dependent modes in AT-cut quartz resonators.
    Chen G; Wu R; Wang J; Du J; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):811-6. PubMed ID: 22547292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.