These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 18263220)

  • 41. Novel modeling technique for the stator of traveling wave ultrasonic motors.
    Pons JL; Rodríguez H; Ceres R; Calderón L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1429-35. PubMed ID: 14682626
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.
    Wang J; Yang L; Pan Q; Chao MC; Du J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1102-7. PubMed ID: 21622066
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of a liquid layer on thickness-shear vibrations of rectangular AT-cut quartz plates.
    Lee PC; Huang R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):604-11. PubMed ID: 12046936
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A normal mode expansion for piezoelectric plates and certain of its applications.
    Peach RC
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(5):593-611. PubMed ID: 18290192
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modeling of piezoelectric devices with the finite volume method.
    Bolborici V; Dawson F; Pugh M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jul; 57(7):1673-91. PubMed ID: 20639161
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electro-mechanical coupling in shear-mode FBAR with piezoelectric modulated thin film.
    Milyutin E; Muralt P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):685-8. PubMed ID: 21507745
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The thermal effect of metal electrodes on thickness-shear vibrations of crystal plates.
    Wang J; Du J; Shen L; Yang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Nov; 54(11):2331-6. PubMed ID: 18051167
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimal electrode shape and size of lateral-field-excited piezoelectric crystal resonators.
    Ma T; Zhang C; Wang W; Zhang Z; Feng G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jan; 58(1):263-6. PubMed ID: 21244997
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of a monolithic crystal plate acoustic wave filter.
    He H; Liu J; Yang J
    Ultrasonics; 2011 Dec; 51(8):991-6. PubMed ID: 21705036
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A new method of determining the equivalent circuit parameters of piezoelectric resonators and analysis of the piezoelectric loading effect.
    Kim JS; Choi K; Yu I
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(4):424-6. PubMed ID: 18263202
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Viscosity sensor utilizing a piezoelectric thickness shear sandwich resonator.
    Thalhammer R; Braun S; Devcic-Kuhar B; Groschl M; Trampler F; Benes E; Nowotny H; Kostal P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1331-40. PubMed ID: 18244295
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Advances in high-Q piezoelectric resonator materials and devices.
    Ballato A; Gualtieri JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(6):834-44. PubMed ID: 18263273
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single-element ultrasonic transducer modeling using a hybrid FD-PSTD method.
    Filoux E; Levassort F; Callé S; Certon D; Lethiecq M
    Ultrasonics; 2009 Dec; 49(8):611-4. PubMed ID: 19625065
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acoustofluidics 4: Piezoelectricity and application in the excitation of acoustic fields for ultrasonic particle manipulation.
    Dual J; Möller D
    Lab Chip; 2012 Feb; 12(3):506-14. PubMed ID: 22218392
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of coupled fast-shear and extensional vibrations of a LiTaO3 crystal plate with a ferroelectric inversion layer.
    Ma T; Pei J; Wang J; Du J; Zhang C; Huang B; Yuan L; Yu F
    J Acoust Soc Am; 2016 May; 139(5):2635. PubMed ID: 27250157
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modeling of a short-term stability measuring system of quartz crystal resonators.
    Sthal F; Mourey M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):182-7. PubMed ID: 18238412
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-frequency resonant characteristics of triple-layered piezoceramic bimorphs determined using experimental measurements and theoretical analysis.
    Huang YH; Ma CC; Chao CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1219-32. PubMed ID: 22718872
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanical effects of electrodes on the vibrations of quartz crystal plates.
    Lee PC; Huang R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):612-25. PubMed ID: 12046937
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A few transient effects in AT-cut quartz thickness-shear resonators.
    Zhang R; Hu H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2758-62. PubMed ID: 23443713
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling of composite piezoelectric structures with the finite volume method.
    Bolborici V; Dawson FP; Pugh MC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):156-62. PubMed ID: 22293746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.