These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18263257)

  • 1. Precision frequency trimming of SAW and STW resonators using Xe(+) heavy ion bombardment.
    Aliev VS; Avramov ID
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(5):694-8. PubMed ID: 18263257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gigahertz range resonant devices for oscillator applications using shear horizontal acoustic waves.
    Avramov ID
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):459-68. PubMed ID: 18263207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Q metal strip SSBW resonators using a SAW design.
    Avramov ID
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(6):530-4. PubMed ID: 18285074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SAW resonator design and fabrication for 2.0, 2.6 and 3.3 GHz.
    Pendergrass LL; Studebaker LG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):372-9. PubMed ID: 18290162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. STW two-port asynchronous resonator on BT-cut quartz.
    Soluch W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2519-21. PubMed ID: 19049932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STW in-line acoustically coupled resonator filter on quartz.
    Soluch W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Apr; 55(4):879-82. PubMed ID: 18467233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and test of 3 GHz, fundamental mode surface transverse wave resonators on quartz.
    Bigler E; Gavignet E; Ballandras S; Denissenko S; Cambril E
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):399-405. PubMed ID: 18244137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harmonic GHz surface-acoustic-wave filters with unidirectional transducers.
    Huegli R
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(3):177-82. PubMed ID: 18263172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of SAW synchronous two-port resonators on GdCa₄O(BO₃)₃ crystal.
    Soluch W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):485-7. PubMed ID: 21342834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic wave based MEMS devices for biosensing applications.
    Voiculescu I; Nordin AN
    Biosens Bioelectron; 2012 Mar; 33(1):1-9. PubMed ID: 22310157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of SAW resonators in high-performance instrumentation.
    Bray RC
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):331-41. PubMed ID: 18290159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical sensor based on surface acoustic wave resonator using Langmuir-Blodgett film.
    Nomura T; Takebayashi R; Saitoh A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1261-5. PubMed ID: 18244288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The coupling-of-modes approach to the analysis of STW devices. II.
    Strashilov VL; Djordjev KD; Yantchev VM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1512-7. PubMed ID: 18244348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis of wave generation and propagation in a focused surface acoustic wave device for potential microfluidics applications.
    Sankaranarayanan SK; Bhethanabotla VR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):631-43. PubMed ID: 19411221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling-of-modes analysis of STW resonators including loss mechanism.
    Yantchev VM; Strashilov VL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Mar; 49(3):331-6. PubMed ID: 12322882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel matching network employing surface acoustic wave devices for W-CDMA power amplifiers.
    Li H; He S; Hashimoto KY; Omori T; Yamaguchi M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e905-9. PubMed ID: 16797655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vacuum-deposited wave-guiding layers on STW resonators based on LiTaO(3) substrate as love wave sensors for chemical and biochemical sensing in liquids.
    Barié N; Stahl U; Rapp M
    Ultrasonics; 2010 May; 50(6):606-12. PubMed ID: 20092864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Structural Parameters on Performance of SAW Resonators Based on 128° YX LiNbO
    Geng W; Zhao C; Xue F; Qiao X; He J; Xue G; Liu Y; Wei H; Bi K; Mei L; Chou X
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface Acoustic Wave (SAW) for Chemical Sensing Applications of Recognition Layers.
    Mujahid A; Dickert FL
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear frequency tuning of SAW resonators.
    Driscoll MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(4):366-9. PubMed ID: 18267597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.