These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 18263264)

  • 1. Multilayer piezoelectric ceramics for two-dimensional array transducers.
    Goldberg RL; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(5):761-71. PubMed ID: 18263264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of signal-to-noise ratio for multilayer PZT transducers.
    Goldberg RL; Smith SW
    Ultrason Imaging; 1995 Apr; 17(2):95-113. PubMed ID: 7571210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid multi/single layer array transducers for increased signal-to-noise ratio.
    Goldberg RL; Emery CD; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):315-25. PubMed ID: 18244129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional array transducers using thick film connection technology.
    Smith SW; Light ED
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(6):727-34. PubMed ID: 18263240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large improvement of the electrical impedance of imaging and high-intensity focused ultrasound (HIFU) phased arrays using multilayer piezoelectric ceramics coupled in lateral mode.
    Song J; Lucht B; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jul; 59(7):1584-95. PubMed ID: 22828853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic imaging using a 5-MHz multilayer/single-layer hybrid array for increased signal-to-noise ratio.
    Emery CD; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1101-19. PubMed ID: 18244304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved signal-to-noise ratio in hybrid 2-D arrays: experimental confirmation.
    Emery CD; Smith SW
    Ultrason Imaging; 1997 Apr; 19(2):93-111. PubMed ID: 9381632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband Ultrasonic Array Transducer From Multilayer Piezoelectric Ceramic With Lowered Co-Firing Temperature.
    Ke Q; Liew WH; Zhang L; Tan CKI; Jiang C; Yao K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 May; 67(5):968-974. PubMed ID: 31841404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of transmit and receive performance at the fundamental and third harmonic resonance frequency of a medical ultrasound transducer.
    Frijlink ME; Løvstakken L; Torp H
    Ultrasonics; 2009 Dec; 49(8):601-4. PubMed ID: 19403153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional arrays for medical ultrasound using multilayer flexible circuit interconnection.
    Davidsen RE; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):338-48. PubMed ID: 18244185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-layered PZT/polymer composites to increase signal-to-noise ratio and resolution for medical ultrasound transducers part II: thick film technology.
    Mills DM; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jul; 49(7):1005-14. PubMed ID: 12152936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theory and operation of 2-D array piezoelectric micromachined ultrasound transducers.
    Dausch DE; Castellucci JB; Chou DR; von Ramm OT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2484-92. PubMed ID: 19049928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-frequency annular array fabrication using a flex circuit matching layer.
    Lay HS; Simpson EA; Griffin G; Lockwood GR
    Ultrason Imaging; 2012 Jul; 34(3):196-204. PubMed ID: 22972915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-layered PZT/polymer composites to increase signal-to-noise ratio and resolution for medical ultrasound transducers.
    Mills DM; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):961-71. PubMed ID: 18238501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo imaging using a copolymer phased array.
    Goldberg RL; Smith SW; Brown LF
    Ultrason Imaging; 1992 Jul; 14(3):234-48. PubMed ID: 1448890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional arrays for medical ultrasound.
    Smith SW; Trahey GE; von Ramm OT
    Ultrason Imaging; 1992 Jul; 14(3):213-33. PubMed ID: 1448889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-density flexible interconnect for two-dimensional ultrasound arrays.
    Fiering JO; Hultman P; Lee W; Light ED; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(3):764-70. PubMed ID: 18238607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of transducer elements in two-dimensional arrays for medical ultrasound imaging.
    Turnbull DH; Foster FS
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(4):464-75. PubMed ID: 18267657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling and simulation of high-frequency (100 MHz) ultrasonic linear arrays based on single crystal LiNbO3.
    Zhang JY; Xu WJ; Carlier J; Ji XM; Nongaillard B; Queste S; Huang YP
    Ultrasonics; 2012 Jan; 52(1):47-53. PubMed ID: 21764097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.