These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 18263270)

  • 1. Development of circuit for measuring both Q variation and resonant frequency shift of quartz crystal microbalance.
    Nakamoto T; Kobayashi T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(6):806-11. PubMed ID: 18263270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different experimental results for the influence of immersion angle on the resonant frequency of a quartz crystal microbalance in a liquid phase: with a comment.
    Shen D; Kang Q; Li X; Cai H; Wang Y
    Anal Chim Acta; 2007 Jun; 593(2):188-95. PubMed ID: 17543606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QCM Operation in Liquids:  An Explanation of Measured Variations in Frequency and Q Factor with Liquid Conductivity.
    Rodahl M; Höök F; Kasemo B
    Anal Chem; 1996 Jul; 68(13):2219-27. PubMed ID: 21619308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-scan measurement of conductance of a quartz crystal microbalance array coupled with resonant markers for biosensing in liquid phase.
    Hsiao HY; Chen RL; Cheng TJ
    Rev Sci Instrum; 2009 Apr; 80(4):044301. PubMed ID: 19405677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Resistance-Amplitude-Frequency Effect of In-Liquid Quartz Crystal Microbalance.
    Huang X; Bai Q; Zhou Q; Hu J
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28640210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proximity effect in quartz crystal microbalance.
    Yu GY; Janata J
    Anal Chem; 2008 Apr; 80(8):2751-5. PubMed ID: 18355082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quartz crystal microbalance based on passive frequency to voltage converter.
    Burda I; Tunyagi A
    Rev Sci Instrum; 2012 Feb; 83(2):025107. PubMed ID: 22380125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the specific adsorption of biotinylated microbubbles using a quartz crystal microbalance.
    Muramoto T; Shimoya R; Yoshida K; Watanabe Y
    Ultrasound Med Biol; 2014 May; 40(5):1027-33. PubMed ID: 24412171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal amplification with multilayer arrangements on chemical quartz-crystal-resonator sensors.
    Lucklum R; Behling C; Hauptmann P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(5):1246-52. PubMed ID: 18238667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method for measuring the losses and loading of a quartz crystal microbalance.
    Kankare J; Loikas K; Salomäki M
    Anal Chem; 2006 Mar; 78(6):1875-82. PubMed ID: 16536423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic wave flow sensor using quartz thickness shear mode resonator.
    Qin L; Zeng Z; Cheng H; Wang QM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):1945-54. PubMed ID: 19811997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quartz crystal microbalance technique for analysis of cooling crystallization.
    Liu LS; Kim J; Chang SM; Choi GJ; Kim WS
    Anal Chem; 2013 May; 85(9):4790-6. PubMed ID: 23550591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Note: sensitivity multiplication module for quartz crystal microbalance applications.
    Burda I; Silaghi A; Tunyagi A; Simon S; Popescu O
    Rev Sci Instrum; 2014 Feb; 85(2):026116. PubMed ID: 24593416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Quartz Crystal Microbalance dew point sensor without frequency measurement.
    Wang G; Zhang W; Wang S; Sun J
    Rev Sci Instrum; 2014 Nov; 85(11):115002. PubMed ID: 25430139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improve the signal-to-noise ratio of a quartz crystal microbalance in an impedance analysis method.
    Kang Q; Qi Y; Zhang P; Shen D
    Talanta; 2007 Jun; 72(4):1474-80. PubMed ID: 19071786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel instrumentation monitoring in situ platelet adhesivity with a quartz crystal microbalance.
    Matsuda T; Kishida A; Ebato H; Okahata Y
    ASAIO J; 1992; 38(3):M171-3. PubMed ID: 1457841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental study on the characteristic of the NS-GT cut quartz crystal resonator oscillating in the sub-resonant frequency.
    Yamagata S; Kawashima H
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1175-82. PubMed ID: 18244311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and evaluation of an antiparallel coupled resonator for chemical sensor applications.
    Abe T; Kato H
    Anal Chem; 2007 Sep; 79(17):6804-6. PubMed ID: 17665878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time monitoring of peptic and tryptic digestions of bovine beta-casein using quartz crystal microbalance.
    Huenerbein A; Schmelzer CE; Neubert RH
    Anal Chim Acta; 2007 Feb; 584(1):72-7. PubMed ID: 17386587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence on the electric power of the immersion-angle dependence of the resonant-frequency shift of a quartz crystal microbalance in a liquid.
    Yoshimoto M; Maruyama Y; Kurosawa S; Kanazawa KK
    Anal Chim Acta; 2007 Apr; 589(1):39-43. PubMed ID: 17397650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.