These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 18263283)
1. An accelerated learning algorithm for multilayer perceptrons: optimization layer by layer. Ergezinger S; Thomsen E IEEE Trans Neural Netw; 1995; 6(1):31-42. PubMed ID: 18263283 [TBL] [Abstract][Full Text] [Related]
2. Fast training of multilayer perceptrons. Verma B IEEE Trans Neural Netw; 1997; 8(6):1314-20. PubMed ID: 18255733 [TBL] [Abstract][Full Text] [Related]
4. On the initialization and optimization of multilayer perceptrons. Weymaere N; Martens JP IEEE Trans Neural Netw; 1994; 5(5):738-51. PubMed ID: 18267848 [TBL] [Abstract][Full Text] [Related]
5. A new error function at hidden layers for past training of multilayer perceptrons. Oh SH; Lee SY IEEE Trans Neural Netw; 1999; 10(4):960-4. PubMed ID: 18252596 [TBL] [Abstract][Full Text] [Related]
6. The layer-wise method and the backpropagation hybrid approach to learning a feedforward neural network. Rubanov NS IEEE Trans Neural Netw; 2000; 11(2):295-305. PubMed ID: 18249761 [TBL] [Abstract][Full Text] [Related]
7. Decomposition Techniques for Multilayer Perceptron Training. Grippo L; Manno A; Sciandrone M IEEE Trans Neural Netw Learn Syst; 2016 Nov; 27(11):2146-2159. PubMed ID: 26415186 [TBL] [Abstract][Full Text] [Related]
8. A fast feedforward training algorithm using a modified form of the standard backpropagation algorithm. Abid S; Fnaiech F; Najim M IEEE Trans Neural Netw; 2001; 12(2):424-30. PubMed ID: 18244397 [TBL] [Abstract][Full Text] [Related]
9. An equalized error backpropagation algorithm for the on-line training of multilayer perceptrons. Martens JP; Weymaere N IEEE Trans Neural Netw; 2002; 13(3):532-41. PubMed ID: 18244454 [TBL] [Abstract][Full Text] [Related]
11. A learning rule for very simple universal approximators consisting of a single layer of perceptrons. Auer P; Burgsteiner H; Maass W Neural Netw; 2008 Jun; 21(5):786-95. PubMed ID: 18249524 [TBL] [Abstract][Full Text] [Related]
12. Evolutionary optimization framework to train multilayer perceptrons for engineering applications. Al-Hajj R; Fouad MM; Zeki M Math Biosci Eng; 2024 Jan; 21(2):2970-2990. PubMed ID: 38454715 [TBL] [Abstract][Full Text] [Related]
13. Parameter incremental learning algorithm for neural networks. Wan S; Banta LE IEEE Trans Neural Netw; 2006 Nov; 17(6):1424-38. PubMed ID: 17131658 [TBL] [Abstract][Full Text] [Related]
14. Dynamic learning rate optimization of the backpropagation algorithm. Yu XH; Chen GA; Cheng SX IEEE Trans Neural Netw; 1995; 6(3):669-77. PubMed ID: 18263352 [TBL] [Abstract][Full Text] [Related]
15. Using random weights to train multilayer networks of hard-limiting units. Barlett PL; Downs T IEEE Trans Neural Netw; 1992; 3(2):202-10. PubMed ID: 18276421 [TBL] [Abstract][Full Text] [Related]
16. Novel maximum-margin training algorithms for supervised neural networks. Ludwig O; Nunes U IEEE Trans Neural Netw; 2010 Jun; 21(6):972-84. PubMed ID: 20409990 [TBL] [Abstract][Full Text] [Related]
17. An improved algorithm for learning long-term dependency problems in adaptive processing of data structures. Cho SY; Chi Z; Siu WC; Tsoi AC IEEE Trans Neural Netw; 2003; 14(4):781-93. PubMed ID: 18238059 [TBL] [Abstract][Full Text] [Related]
18. Enhanced training algorithms, and integrated training/architecture selection for multilayer perceptron networks. Bello MG IEEE Trans Neural Netw; 1992; 3(6):864-75. PubMed ID: 18276484 [TBL] [Abstract][Full Text] [Related]
19. How dependencies between successive examples affect on-line learning. Wiegerinck W; Heskes T Neural Comput; 1996 Nov; 8(8):1743-65. PubMed ID: 8888616 [TBL] [Abstract][Full Text] [Related]
20. The No-Prop algorithm: a new learning algorithm for multilayer neural networks. Widrow B; Greenblatt A; Kim Y; Park D Neural Netw; 2013 Jan; 37():182-8. PubMed ID: 23140797 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]