These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 18263421)

  • 1. Energy function for the one-unit Oja algorithm.
    Zhang Q; Leung YW
    IEEE Trans Neural Netw; 1995; 6(5):1291-3. PubMed ID: 18263421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Algorithms for accelerated convergence of adaptive PCA.
    Chatterjee C; Kang Z; Roychowdhury VP
    IEEE Trans Neural Netw; 2000; 11(2):338-55. PubMed ID: 18249765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robust subspace algorithm for principal component analysis.
    Weingessel A; Hornik K
    Int J Neural Syst; 2003 Oct; 13(5):307-13. PubMed ID: 14652872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulated Hebb-Oja learning rule--a method for principal subspace analysis.
    Jankovic MV; Ogawa H
    IEEE Trans Neural Netw; 2006 Mar; 17(2):345-56. PubMed ID: 16566463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural network learning algorithms for tracking minor subspace in high-dimensional data stream.
    Feng DZ; Zheng WX; Jia Y
    IEEE Trans Neural Netw; 2005 May; 16(3):513-21. PubMed ID: 15940982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A symmetric linear neural network that learns principal components and their variances.
    Peper F; Noda H
    IEEE Trans Neural Netw; 1996; 7(4):1042-7. PubMed ID: 18263500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new modulated Hebbian learning rule--biologically plausible method for local computation of a principal subspace.
    Jankovic M; Ogawa H
    Int J Neural Syst; 2003 Aug; 13(4):215-23. PubMed ID: 12964209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of minimum-action and steepest-descent paths in gradient systems.
    Díaz Leines G; Rogal J
    Phys Rev E; 2016 Feb; 93(2):022307. PubMed ID: 26986352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A global gradient-noise covariance expression for stationary real Gaussian inputs.
    An PE; Brown M; Harris CJ
    IEEE Trans Neural Netw; 1995; 6(6):1549-51. PubMed ID: 18263449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global convergence analysis of a discrete time nonnegative ICA algorithm.
    Ye M
    IEEE Trans Neural Netw; 2006 Jan; 17(1):253-6. PubMed ID: 16526495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An annealed chaotic maximum neural network for bipartite subgraph problem.
    Wang J; Tang Z; Wang R
    Int J Neural Syst; 2004 Apr; 14(2):107-16. PubMed ID: 15112368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An accelerated learning algorithm for multilayer perceptron networks.
    Parlos AG; Fernandez B; Atiya AF; Muthusami J; Tsai WK
    IEEE Trans Neural Netw; 1994; 5(3):493-7. PubMed ID: 18267816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-oriented hierarchical method for computation of principal components using subspace learning algorithm.
    Jankovic M; Ogawa H
    Int J Neural Syst; 2004 Oct; 14(5):313-23. PubMed ID: 15593379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary product unit based neural networks for regression.
    Martínez-Estudillo A; Martínez-Estudillo F; Hervás-Martínez C; García-Pedrajas N
    Neural Netw; 2006 May; 19(4):477-86. PubMed ID: 16481148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple modification of Oja rule limits L1-norm of weight vector and leads to sparse connectivity.
    Aparin V
    Neural Comput; 2012 Mar; 24(3):724-43. PubMed ID: 22091668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative loss bounds for single neurons.
    Helmbold DP; Kivinen J; Warmuth MK
    IEEE Trans Neural Netw; 1999; 10(6):1291-304. PubMed ID: 18252631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deterministic global optimization for FNN training.
    Toh KA
    IEEE Trans Syst Man Cybern B Cybern; 2003; 33(6):977-83. PubMed ID: 18238248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A local linearized least squares algorithm for training feedforward neural networks.
    Stan O; Kamen E
    IEEE Trans Neural Netw; 2000; 11(2):487-95. PubMed ID: 18249777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reformulated radial basis neural networks trained by gradient descent.
    Karayiannis NB
    IEEE Trans Neural Netw; 1999; 10(3):657-71. PubMed ID: 18252566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fastICA algorithm revisited: convergence analysis.
    Oja E; Yuan Z
    IEEE Trans Neural Netw; 2006 Nov; 17(6):1370-81. PubMed ID: 17131654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.