These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 18263449)
1. A global gradient-noise covariance expression for stationary real Gaussian inputs. An PE; Brown M; Harris CJ IEEE Trans Neural Netw; 1995; 6(6):1549-51. PubMed ID: 18263449 [TBL] [Abstract][Full Text] [Related]
2. On the convergence rate performance of the normalized least-mean-square adaptation. An PE; Brown B; Harris CJ IEEE Trans Neural Netw; 1997; 8(5):1211-4. PubMed ID: 18255724 [TBL] [Abstract][Full Text] [Related]
3. Noise-shaping gradient descent-based online adaptation algorithms for digital calibration of analog circuits. Chakrabartty S; Shaga RK; Aono K IEEE Trans Neural Netw Learn Syst; 2013 Apr; 24(4):554-65. PubMed ID: 24808377 [TBL] [Abstract][Full Text] [Related]
4. Multiplicative neural noise can favor an independent components representation of sensory input. Gottschalk A; Sexton MG; Roschke G Network; 2004 Nov; 15(4):291-311. PubMed ID: 15600235 [TBL] [Abstract][Full Text] [Related]
5. Reformulated radial basis neural networks trained by gradient descent. Karayiannis NB IEEE Trans Neural Netw; 1999; 10(3):657-71. PubMed ID: 18252566 [TBL] [Abstract][Full Text] [Related]
6. Recursive Bayesian recurrent neural networks for time-series modeling. Mirikitani DT; Nikolaev N IEEE Trans Neural Netw; 2010 Feb; 21(2):262-74. PubMed ID: 20040415 [TBL] [Abstract][Full Text] [Related]
7. Algorithms for accelerated convergence of adaptive PCA. Chatterjee C; Kang Z; Roychowdhury VP IEEE Trans Neural Netw; 2000; 11(2):338-55. PubMed ID: 18249765 [TBL] [Abstract][Full Text] [Related]
11. Principal component extraction using recursive least squares learning. Bannour S; Azimi-Sadjadi MR IEEE Trans Neural Netw; 1995; 6(2):457-69. PubMed ID: 18263327 [TBL] [Abstract][Full Text] [Related]
12. Generation of homogeneous 3D Gaussian noise with spherically symmetric covariance. Wegner D; Repasi E Appl Opt; 2020 Mar; 59(7):1960-1967. PubMed ID: 32225713 [TBL] [Abstract][Full Text] [Related]
13. On the Convergence of the LMS Algorithm with Adaptive Learning Rate for Linear Feedforward Networks. Luo ZQ Neural Comput; 1991; 3(2):226-245. PubMed ID: 31167300 [TBL] [Abstract][Full Text] [Related]
14. Higher-order-statistics-based radial basis function networks for signal enhancement. Lin BS; Lin BS; Chong FC; Lai F IEEE Trans Neural Netw; 2007 May; 18(3):823-32. PubMed ID: 17526347 [TBL] [Abstract][Full Text] [Related]
15. Robust blind identification of room acoustic channels in symmetric alpha-stable distributed noise environments. He H; Lu J; Chen J; Qiu X; Benesty J J Acoust Soc Am; 2014 Aug; 136(2):693-704. PubMed ID: 25096104 [TBL] [Abstract][Full Text] [Related]
17. General second-order covariance of Gaussian maximum likelihood estimates applied to passive source localization in fluctuating waveguides. Bertsatos I; Zanolin M; Ratilal P; Chen T; Makris NC J Acoust Soc Am; 2010 Nov; 128(5):2635-51. PubMed ID: 21110561 [TBL] [Abstract][Full Text] [Related]
18. On objective function, regularizer, and prediction error of a learning algorithm for dealing with multiplicative weight noise. Sum JP; Leung CS; Ho KI IEEE Trans Neural Netw; 2009 Jan; 20(1):124-38. PubMed ID: 19109090 [TBL] [Abstract][Full Text] [Related]
19. A fast, robust algorithm for power line interference cancellation in neural recording. Keshtkaran MR; Yang Z J Neural Eng; 2014 Apr; 11(2):026017. PubMed ID: 24658388 [TBL] [Abstract][Full Text] [Related]
20. Gaussian estimation and joint modeling of dispersions and correlations in longitudinal data. Al-Rawwash M; Pourahmadi M Comput Methods Programs Biomed; 2006 May; 82(2):106-13. PubMed ID: 16621127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]