These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 18263464)

  • 1. Randomness in generalization ability: a source to improve it.
    Sarkar D
    IEEE Trans Neural Netw; 1996; 7(3):676-85. PubMed ID: 18263464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Vapnik-Chervonenkis dimension of graph and recursive neural networks.
    Scarselli F; Tsoi AC; Hagenbuchner M
    Neural Netw; 2018 Dec; 108():248-259. PubMed ID: 30219742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new formulation for feedforward neural networks.
    Razavi S; Tolson BA
    IEEE Trans Neural Netw; 2011 Oct; 22(10):1588-98. PubMed ID: 21859600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A selective learning method to improve the generalization of multilayer feedforward neural networks.
    Galván IM; Isasi P; Aler R; Valls JM
    Int J Neural Syst; 2001 Apr; 11(2):167-77. PubMed ID: 14632169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalization and PAC learning: some new results for the class of generalized single-layer networks.
    Holden SB; Rayner PW
    IEEE Trans Neural Netw; 1995; 6(2):368-80. PubMed ID: 18263319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is extreme learning machine feasible? A theoretical assessment (part II).
    Lin S; Liu X; Fang J; Xu Z
    IEEE Trans Neural Netw Learn Syst; 2015 Jan; 26(1):21-34. PubMed ID: 25069128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the sample complexity of learning for networks of spiking neurons with nonlinear synaptic interactions.
    Schmitt M
    IEEE Trans Neural Netw; 2004 Sep; 15(5):995-1001. PubMed ID: 15484876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation.
    Vuković N; Miljković Z
    Neural Netw; 2013 Oct; 46():210-26. PubMed ID: 23811384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Representation and generalization properties of class-entropy networks.
    Ridella S; Rovetta S; Zunino R
    IEEE Trans Neural Netw; 1999; 10(1):31-47. PubMed ID: 18252501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A formal selection and pruning algorithm for feedforward artificial neural network optimization.
    Ponnapalli PS; Ho KC; Thomson M
    IEEE Trans Neural Netw; 1999; 10(4):964-8. PubMed ID: 18252597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherent optical neural networks that have optical-frequency-controlled behavior and generalization ability in the frequency domain.
    Hirose A; Eckmiller R
    Appl Opt; 1996 Feb; 35(5):836-43. PubMed ID: 21069078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence.
    Hirose A; Yoshida S
    IEEE Trans Neural Netw Learn Syst; 2012 Apr; 23(4):541-51. PubMed ID: 24805038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fast U-D factorization-based learning algorithm with applications to nonlinear system modeling and identification.
    Zhang Y; Li XR
    IEEE Trans Neural Netw; 1999; 10(4):930-8. PubMed ID: 18252590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient constrained training algorithm for feedforward networks.
    Karras DA; Perantonis SJ
    IEEE Trans Neural Netw; 1995; 6(6):1420-34. PubMed ID: 18263435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural networks with local receptive fields and superlinear VC dimension.
    Schmitt M
    Neural Comput; 2002 Apr; 14(4):919-56. PubMed ID: 11936967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative analysis of support vector machines and extreme learning machines.
    Liu X; Gao C; Li P
    Neural Netw; 2012 Sep; 33():58-66. PubMed ID: 22572469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning capacity and sample complexity on expert networks.
    Fu L
    IEEE Trans Neural Netw; 1996; 7(6):1517-20. PubMed ID: 18263546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear constraints on weight representation for generalized learning of multilayer networks.
    Ishii M; Kumazawa I
    Neural Comput; 2001 Dec; 13(12):2851-63. PubMed ID: 11705413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ridge polynomial networks.
    Shin Y; Ghosh J
    IEEE Trans Neural Netw; 1995; 6(3):610-22. PubMed ID: 18263347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.