These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 18263520)

  • 1. Neural networks for process scheduling in real-time communication systems.
    Cavalieri S; Mirabella O
    IEEE Trans Neural Netw; 1996; 7(5):1272-85. PubMed ID: 18263520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadcast scheduling in wireless multihop networks using a neural-network-based hybrid algorithm.
    Shi H; Wang L
    Neural Netw; 2005; 18(5-6):765-71. PubMed ID: 16087313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neural network approach to job-shop scheduling.
    Zhou DN; Cherkassky V; Baldwin TR; Olson DE
    IEEE Trans Neural Netw; 1991; 2(1):175-9. PubMed ID: 18276371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A short-term operating room surgery scheduling problem integrating multiple nurses roster constraints.
    Xiang W; Yin J; Lim G
    Artif Intell Med; 2015 Feb; 63(2):91-106. PubMed ID: 25563674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deadlock-free genetic scheduling algorithm for automated manufacturing systems based on deadlock control policy.
    Xing K; Han L; Zhou M; Wang F
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):603-15. PubMed ID: 22106151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Neurodynamic Approach for Real-Time Scheduling via Maximizing Piecewise Linear Utility.
    Guo Z; Baruah SK
    IEEE Trans Neural Netw Learn Syst; 2016 Feb; 27(2):238-48. PubMed ID: 26336153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Framework of Joint Energy Provisioning and Manufacturing Scheduling in Smart Industrial Wireless Rechargeable Sensor Networks.
    Feng Y; Wang Y; Zheng H; Mi S; Tan J
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30087308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic algorithm-based neural fuzzy decision tree for mixed scheduling in ATM networks.
    Lin CT; Chung IF; Pu HC; Lee' TH; Chang JY
    IEEE Trans Syst Man Cybern B Cybern; 2002; 32(6):832-45. PubMed ID: 18244889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated bus transit scheduling for the Beijing bus group based on a unified mode of operation.
    Shen Y; Xia J
    Int Trans Oper Res; 2009 Mar; 16(2):227-242. PubMed ID: 32336893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing Policies for Case Scheduling Within 1 Day of Surgery by Markov Chain Models.
    Shi P; Dexter F; Epstein RH
    Anesth Analg; 2016 Feb; 122(2):526-38. PubMed ID: 26797556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Static-dynamic hybrid communication scheduling and control co-design for networked control systems.
    Wen S; Guo G
    ISA Trans; 2017 Nov; 71(Pt 2):553-562. PubMed ID: 28886859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Capacity of 5G NR Grant-Free Scheduling with Shared Radio Resources to Support Ultra-Reliable and Low-Latency Communications.
    Lucas-Estañ MC; Gozalvez J; Sepulcre M
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distributed user-centric scheduling for visible light communication networks.
    Chen L; Wang J; Zhou J; Ng DW; Schober R; Zhao C
    Opt Express; 2016 Jul; 24(14):15570-89. PubMed ID: 27410830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Reliability Scheduling Algorithm for the Static Segment of FlexRay on Vehicle Networks.
    Lee TY; Lin IA; Wang JJ; Tsai JT
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scheduling multiprocessor job with resource and timing constraints using neural networks.
    Huang YM; Chen RM
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(4):490-502. PubMed ID: 18252324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Impact of Rate Adaptation Algorithms on Wi-Fi-Based Factory Automation Systems.
    Fedullo T; Tramarin F; Vitturi S
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32933087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-Core Time-Triggered OCBP-Based Scheduling for Mixed Criticality Periodic Task Systems.
    Baciu MD; Capota EA; Stângaciu CS; Curiac DI; Micea MV
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SAGAS: Simulated annealing and greedy algorithm scheduler for laboratory automation.
    Arai Y; Takahashi K; Horinouchi T; Takahashi K; Ozaki H
    SLAS Technol; 2023 Aug; 28(4):264-277. PubMed ID: 36997066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and distributed gain scheduling strategy for load frequency control in smart grids with communication topology changes.
    Liu S; Liu XP; El Saddik A
    ISA Trans; 2014 Mar; 53(2):454-61. PubMed ID: 24200162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.