These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 18263545)

  • 1. Improving convergence and solution quality of Hopfield-type neural networks with augmented Lagrange multipliers.
    Li SZ
    IEEE Trans Neural Netw; 1996; 7(6):1507-16. PubMed ID: 18263545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solving the TSP by the AALHNN algorithm.
    Hu Y; Duan Q
    Math Biosci Eng; 2022 Jan; 19(4):3427-3448. PubMed ID: 35341258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MAP image restoration and segmentation by constrained optimization.
    Li SZ
    IEEE Trans Image Process; 1998; 7(12):1730-5. PubMed ID: 18276241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability analysis of higher-order neural networks for combinatorial optimization.
    Cooper B
    Int J Neural Syst; 2002; 12(3-4):177-86. PubMed ID: 12370960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Lagrange multiplier and Hopfield-type barrier function method for the traveling salesman problem.
    Dang C; Xu L
    Neural Comput; 2002 Feb; 14(2):303-24. PubMed ID: 11802914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural techniques for combinatorial optimization with applications.
    Smith K; Palaniswami M; Krishnamoorthy M
    IEEE Trans Neural Netw; 1998; 9(6):1301-18. PubMed ID: 18255811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical improvement of the Hopfield model for feasible solutions to the traveling salesman problem by a synapse dynamical system.
    Takahashi Y
    IEEE Trans Syst Man Cybern B Cybern; 1998; 28(6):906-19. PubMed ID: 18256012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel fractional-order memristive Hopfield neural network for traveling salesman problem and its FPGA implementation.
    Li X; Yang X; Ju X
    Neural Netw; 2024 Nov; 179():106548. PubMed ID: 39128274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving local minima of Hopfield networks with augmented Lagrange multipliers for large scale TSPs.
    Martín-Valdivia M; Ruiz-Sepúlveda A; Triguero-Ruiz F
    Neural Netw; 2000 Apr; 13(3):283-5. PubMed ID: 10937961
    [No Abstract]   [Full Text] [Related]  

  • 10. Scheduling multiprocessor job with resource and timing constraints using neural networks.
    Huang YM; Chen RM
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(4):490-502. PubMed ID: 18252324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel constructive-optimizer neural network for the traveling salesman problem.
    Saadatmand-Tarzjan M; Khademi M; Akbarzadeh-T MR; Moghaddam HA
    IEEE Trans Syst Man Cybern B Cybern; 2007 Aug; 37(4):754-70. PubMed ID: 17702277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameter setting of the Hopfield network applied to TSP.
    Talaván PM; Yáñez J
    Neural Netw; 2002 Apr; 15(3):363-73. PubMed ID: 12125891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of the three-dimensional-pattern search problem on Hopfield-like neural networks.
    Feuilleaubois E; Fabart V; Doucet JP
    SAR QSAR Environ Res; 1993; 1(2-3):97-114. PubMed ID: 8790627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limitations of neural networks for solving traveling salesman problems.
    Gee AH; Prager RW
    IEEE Trans Neural Netw; 1995; 6(1):280-2. PubMed ID: 18263311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of the pseudo-inverse method as a constrained static optimization for musculo-tendon forces prediction.
    Moissenet F; Chèze L; Dumas R
    J Biomech Eng; 2012 Jun; 134(6):064503. PubMed ID: 22757507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Generalized Hopfield Network for Nonsmooth Constrained Convex Optimization: Lie Derivative Approach.
    Li C; Yu X; Huang T; Chen G; He X
    IEEE Trans Neural Netw Learn Syst; 2016 Feb; 27(2):308-21. PubMed ID: 26595931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear Hopfield networks and constrained optimization.
    Lendaris GG; Mathia K; Saeks R
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(1):114-8. PubMed ID: 18252285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solving linear integer programming problems by a novel neural model.
    Cavalieri S
    Int J Neural Syst; 1999 Feb; 9(1):27-39. PubMed ID: 10401928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graph partitioning using annealed neural networks.
    Van den Bout DE; Miller TK
    IEEE Trans Neural Netw; 1990; 1(2):192-203. PubMed ID: 18282836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative updating in the Hopfield model.
    Munehisa T; Kobayashi M; Yamazaki H
    IEEE Trans Neural Netw; 2001; 12(5):1243-51. PubMed ID: 18249951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.