BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 18263580)

  • 1. A kinetic study of human protein arginine N-methyltransferase 6 reveals a distributive mechanism.
    Lakowski TM; Frankel A
    J Biol Chem; 2008 Apr; 283(15):10015-25. PubMed ID: 18263580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of human protein arginine N-methyltransferase 2: formation of monomethyl- and asymmetric dimethyl-arginine residues on histone H4.
    Lakowski TM; Frankel A
    Biochem J; 2009 Jun; 421(2):253-61. PubMed ID: 19405910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Förster resonance energy transfer measurements of cofactor-dependent effects on protein arginine N-methyltransferase homodimerization.
    Thomas D; Lakowski TM; Pak ML; Kim JJ; Frankel A
    Protein Sci; 2010 Nov; 19(11):2141-51. PubMed ID: 20812326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient Kinetics Define a Complete Kinetic Model for Protein Arginine Methyltransferase 1.
    Hu H; Luo C; Zheng YG
    J Biol Chem; 2016 Dec; 291(52):26722-26738. PubMed ID: 27834681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity.
    Frankel A; Yadav N; Lee J; Branscombe TL; Clarke S; Bedford MT
    J Biol Chem; 2002 Feb; 277(5):3537-43. PubMed ID: 11724789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Study of Symmetric Methylation on Histone Arginine Catalyzed by Protein Arginine Methyltransferase PRMT5 through QM/MM MD and Free Energy Simulations.
    Yue Y; Chu Y; Guo H
    Molecules; 2015 May; 20(6):10032-46. PubMed ID: 26035101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human protein arginine methyltransferase 7 (PRMT7) is a type III enzyme forming ω-NG-monomethylated arginine residues.
    Zurita-Lopez CI; Sandberg T; Kelly R; Clarke SG
    J Biol Chem; 2012 Mar; 287(11):7859-70. PubMed ID: 22241471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural determinants for the strict monomethylation activity by trypanosoma brucei protein arginine methyltransferase 7.
    Wang C; Zhu Y; Caceres TB; Liu L; Peng J; Wang J; Chen J; Chen X; Zhang Z; Zuo X; Gong Q; Teng M; Hevel JM; Wu J; Shi Y
    Structure; 2014 May; 22(5):756-68. PubMed ID: 24726341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis of arginine asymmetrical dimethylation by PRMT6.
    Wu H; Zheng W; Eram MS; Vhuiyan M; Dong A; Zeng H; He H; Brown P; Frankel A; Vedadi M; Luo M; Min J
    Biochem J; 2016 Oct; 473(19):3049-63. PubMed ID: 27480107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein arginine N-methyltransferase substrate preferences for different nη-substituted arginyl peptides.
    Thomas D; Koopmans T; Lakowski TM; Kreinin H; Vhuiyan MI; Sedlock SA; Bui JM; Martin NI; Frankel A
    Chembiochem; 2014 Jul; 15(11):1607-13. PubMed ID: 25044481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins.
    Branscombe TL; Frankel A; Lee JH; Cook JR; Yang Z; Pestka S; Clarke S
    J Biol Chem; 2001 Aug; 276(35):32971-6. PubMed ID: 11413150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic investigation of PRMT6 substrate recognition reveals broad specificity with a preference for an RG motif or basic and bulky residues.
    Hamey JJ; Rakow S; Bouchard C; Senst JM; Kolb P; Bauer UM; Wilkins MR; Hart-Smith G
    FEBS J; 2021 Oct; 288(19):5668-5691. PubMed ID: 33764612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase.
    Debler EW; Jain K; Warmack RA; Feng Y; Clarke SG; Blobel G; Stavropoulos P
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2068-73. PubMed ID: 26858449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Type I Arginine Methyltransferases PRMT1 and PRMT-3 Act Distributively.
    Kölbel K; Ihling C; Bellmann-Sickert K; Neundorf I; Beck-Sickinger AG; Sinz A; Kühn U; Wahle E
    J Biol Chem; 2009 Mar; 284(13):8274-82. PubMed ID: 19158082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automethylation of protein arginine methyltransferase 6 (PRMT6) regulates its stability and its anti-HIV-1 activity.
    Singhroy DN; Mesplède T; Sabbah A; Quashie PK; Falgueyret JP; Wainberg MA
    Retrovirology; 2013 Jul; 10():73. PubMed ID: 23866860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic properties and kinetic mechanism of human recombinant Lys-9 histone H3 methyltransferase SUV39H1: participation of the chromodomain in enzymatic catalysis.
    Chin HG; Patnaik D; Estève PO; Jacobsen SE; Pradhan S
    Biochemistry; 2006 Mar; 45(10):3272-84. PubMed ID: 16519522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural specificity of substrate for S-adenosylmethionine:protein arginine N-methyltransferases.
    Rawal N; Rajpurohit R; Lischwe MA; Williams KR; Paik WK; Kim S
    Biochim Biophys Acta; 1995 Apr; 1248(1):11-8. PubMed ID: 7536038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nη-substituted arginyl peptide inhibitors of protein arginine N-methyltransferases.
    Lakowski TM; 't Hart P; Ahern CA; Martin NI; Frankel A
    ACS Chem Biol; 2010 Nov; 5(11):1053-63. PubMed ID: 20701328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S-adenosylmethionine: protein-arginine methyltransferase. Purification and mechanism of the enzyme.
    Lee HW; Kim S; Paik WK
    Biochemistry; 1977 Jan; 16(1):78-85. PubMed ID: 12796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The application of differential scanning fluorimetry in exploring bisubstrate binding to protein arginine N-methyltransferase 1.
    Brown JI; Page BDG; Frankel A
    Methods; 2020 Mar; 175():10-23. PubMed ID: 31726226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.