These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1695 related articles for article (PubMed ID: 18264109)
21. Amelioration of the effects of Citrobacter rodentium infection in mice by pretreatment with probiotics. Johnson-Henry KC; Nadjafi M; Avitzur Y; Mitchell DJ; Ngan BY; Galindo-Mata E; Jones NL; Sherman PM J Infect Dis; 2005 Jun; 191(12):2106-17. PubMed ID: 15897997 [TBL] [Abstract][Full Text] [Related]
22. Interleukin-1 (IL-1) signaling in intestinal stromal cells controls KC/ CXCL1 secretion, which correlates with recruitment of IL-22- secreting neutrophils at early stages of Citrobacter rodentium infection. Lee YS; Yang H; Yang JY; Kim Y; Lee SH; Kim JH; Jang YJ; Vallance BA; Kweon MN Infect Immun; 2015 Aug; 83(8):3257-67. PubMed ID: 26034212 [TBL] [Abstract][Full Text] [Related]
23. Bacillus subtilis spores reduce susceptibility to Citrobacter rodentium-mediated enteropathy in a mouse model. D'Arienzo R; Maurano F; Mazzarella G; Luongo D; Stefanile R; Ricca E; Rossi M Res Microbiol; 2006 Nov; 157(9):891-7. PubMed ID: 17005378 [TBL] [Abstract][Full Text] [Related]
25. Desmosomes are unaltered during infections by attaching and effacing pathogens. Guttman JA; Kazemi P; Lin AE; Vogl AW; Finlay BB Anat Rec (Hoboken); 2007 Feb; 290(2):199-205. PubMed ID: 17441212 [TBL] [Abstract][Full Text] [Related]
26. Consequences of Citrobacter rodentium infection on enteroendocrine cells and the enteric nervous system in the mouse colon. O'Hara JR; Skinn AC; MacNaughton WK; Sherman PM; Sharkey KA Cell Microbiol; 2006 Apr; 8(4):646-60. PubMed ID: 16548890 [TBL] [Abstract][Full Text] [Related]
27. IL-22-dependent responses and their role during Melchior K; Gerner RR; Hossain S; Nuccio S-P; Moreira CG; Raffatellu M Infect Immun; 2024 May; 92(5):e0009924. PubMed ID: 38557196 [TBL] [Abstract][Full Text] [Related]
28. Organ specificity, colonization and clearance dynamics in vivo following oral challenges with the murine pathogen Citrobacter rodentium. Wiles S; Clare S; Harker J; Huett A; Young D; Dougan G; Frankel G Cell Microbiol; 2004 Oct; 6(10):963-72. PubMed ID: 15339271 [TBL] [Abstract][Full Text] [Related]
29. Lymphotoxin-β receptor-independent development of intestinal IL-22-producing NKp46+ innate lymphoid cells. Satoh-Takayama N; Lesjean-Pottier S; Sawa S; Vosshenrich CA; Eberl G; Di Santo JP Eur J Immunol; 2011 Mar; 41(3):780-6. PubMed ID: 21341264 [TBL] [Abstract][Full Text] [Related]
30. Interleukin-1 receptor signaling protects mice from lethal intestinal damage caused by the attaching and effacing pathogen Citrobacter rodentium. Lebeis SL; Powell KR; Merlin D; Sherman MA; Kalman D Infect Immun; 2009 Feb; 77(2):604-14. PubMed ID: 19075023 [TBL] [Abstract][Full Text] [Related]
31. Long-term selenium deficiency increases the pathogenicity of a Citrobacter rodentium infection in mice. Smith AD; Cheung L; Botero S Biol Trace Elem Res; 2011 Dec; 144(1-3):965-82. PubMed ID: 21584659 [TBL] [Abstract][Full Text] [Related]
32. T-cell derived acetylcholine aids host defenses during enteric bacterial infection with Citrobacter rodentium. Ramirez VT; Godinez DR; Brust-Mascher I; Nonnecke EB; Castillo PA; Gardner MB; Tu D; Sladek JA; Miller EN; Lebrilla CB; Bevins CL; Gareau MG; Reardon C PLoS Pathog; 2019 Apr; 15(4):e1007719. PubMed ID: 30973939 [TBL] [Abstract][Full Text] [Related]
33. MyD88 signaling in dendritic cells and the intestinal epithelium controls immunity against intestinal infection with C. rodentium. Friedrich C; Mamareli P; Thiemann S; Kruse F; Wang Z; Holzmann B; Strowig T; Sparwasser T; Lochner M PLoS Pathog; 2017 May; 13(5):e1006357. PubMed ID: 28520792 [TBL] [Abstract][Full Text] [Related]
34. Vaccine-induced protection against gastrointestinal bacterial infections in the absence of secretory antibodies. Uren TK; Wijburg OL; Simmons C; Johansen FE; Brandtzaeg P; Strugnell RA Eur J Immunol; 2005 Jan; 35(1):180-8. PubMed ID: 15593123 [TBL] [Abstract][Full Text] [Related]
35. Comparison of colonization dynamics and pathology of mice infected with enteropathogenic Escherichia coli, enterohaemorrhagic E. coli and Citrobacter rodentium. Mundy R; Girard F; FitzGerald AJ; Frankel G FEMS Microbiol Lett; 2006 Dec; 265(1):126-32. PubMed ID: 17034412 [TBL] [Abstract][Full Text] [Related]
36. Cellular responses to attaching and effacing bacteria: activation and implication of the innate immune system. Gobert AP; Wilson KT; Martin C Arch Immunol Ther Exp (Warsz); 2005; 53(3):234-44. PubMed ID: 15995584 [TBL] [Abstract][Full Text] [Related]
37. Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis. Gibson DL; Ma C; Rosenberger CM; Bergstrom KS; Valdez Y; Huang JT; Khan MA; Vallance BA Cell Microbiol; 2008 Feb; 10(2):388-403. PubMed ID: 17910742 [TBL] [Abstract][Full Text] [Related]
38. CD4+-T-cell effector functions and costimulatory requirements essential for surviving mucosal infection with Citrobacter rodentium. Bry L; Brigl M; Brenner MB Infect Immun; 2006 Jan; 74(1):673-81. PubMed ID: 16369024 [TBL] [Abstract][Full Text] [Related]
39. Gap junction hemichannels contribute to the generation of diarrhoea during infectious enteric disease. Guttman JA; Lin AE; Li Y; Bechberger J; Naus CC; Vogl AW; Finlay BB Gut; 2010 Feb; 59(2):218-26. PubMed ID: 19828465 [TBL] [Abstract][Full Text] [Related]
40. Concurrent infection with an intestinal helminth parasite impairs host resistance to enteric Citrobacter rodentium and enhances Citrobacter-induced colitis in mice. Chen CC; Louie S; McCormick B; Walker WA; Shi HN Infect Immun; 2005 Sep; 73(9):5468-81. PubMed ID: 16113263 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]