These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 18264288)

  • 1. Simultaneous fabrication of optical channel waveguides and out-of-plane branching mirrors from a polymeric slab structure.
    Kagami M; Hasegawa K; Ito H
    Appl Opt; 1997 Oct; 36(30):7700-7. PubMed ID: 18264288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of channel waveguides from sol-gel-processed polyvinylpyrrolidone/ SiO(2) composite materials.
    Yoshida M; Prasad PN
    Appl Opt; 1996 Mar; 35(9):1500-6. PubMed ID: 21085265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of low-loss, single-mode-channel waveguide with DNA-CTMA biopolymer by multistep processing technology.
    Zhou J; Wang ZY; Yang X; Wong CY; Pun EY
    Opt Lett; 2010 May; 35(10):1512-4. PubMed ID: 20479792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and analysis of a low-loss in-fiber active polymer waveguide.
    Smith KH; Markos DJ; Ipson BL; Schultz SM; Selfridge RH; Barber JP; Campbell KJ; Monte TD; Dyott RB
    Appl Opt; 2004 Feb; 43(4):933-9. PubMed ID: 14960088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light turning mirrors for hybrid integration of SiON-based optical waveguides and photo-detectors.
    Civitci F; Sengo G; Driessen A; Pollnau M; Annema AJ; Hoekstra HJ
    Opt Express; 2013 Oct; 21(20):24375-84. PubMed ID: 24104346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-low loss ridge waveguides on lithium niobate via argon ion milling and gas clustered ion beam smoothening.
    Siew SY; Cheung EJH; Liang H; Bettiol A; Toyoda N; Alshehri B; Dogheche E; Danner AJ
    Opt Express; 2018 Feb; 26(4):4421-4430. PubMed ID: 29475292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of dry etching parameters for fabrication of polysilicon waveguides with smooth sidewall using a capacitively coupled plasma reactor.
    Cheemalapati S; Ladanov M; Winskas J; Pyayt A
    Appl Opt; 2014 Sep; 53(25):5745-9. PubMed ID: 25321372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the pedestal process for reducing sidewall scattering in photonic waveguides.
    Melo EG; Alayo MI; Carvalho DO
    Opt Express; 2017 May; 25(9):9755-9760. PubMed ID: 28468355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Method of Low-Temperature ICP Etching of InP/InGaAsP Heterostructures in Cl
    Ishutkin S; Arykov V; Yunusov I; Stepanenko M; Smirnov V; Troyan P; Zhidik Y
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of large-core, high-Δ optical waveguides in polymers.
    Kagami M; Ito H; Ichikawa T; Kato S; Matsuda M; Takahashi N
    Appl Opt; 1995 Feb; 34(6):1041-6. PubMed ID: 21037631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si.
    He J; Feng M; Zhong Y; Wang J; Zhou R; Gao H; Zhou Y; Sun Q; Liu J; Huang Y; Zhang S; Wang H; Ikeda M; Yang H
    Sci Rep; 2018 May; 8(1):7922. PubMed ID: 29784929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium niobate ridged waveguides with smooth vertical sidewalls fabricated by an ultra-precision cutting method.
    Takigawa R; Higurashi E; Kawanishi T; Asano T
    Opt Express; 2014 Nov; 22(22):27733-8. PubMed ID: 25401917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental assessment of SU-8 optical waveguides buried in plastic substrate for optical interconnections.
    Hamid HH; Fickenscher T; Thiel DV
    Appl Opt; 2015 Aug; 54(22):6623-31. PubMed ID: 26368073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-density channel alignment of graded index core polymer optical waveguide and its crosstalk analysis with ray tracing method.
    Hsu HH; Ishigure T
    Opt Express; 2010 Jun; 18(13):13368-78. PubMed ID: 20588466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-loss flexible Parylene photonic waveguides for optical implants.
    Reddy JW; Chamanzar M
    Opt Lett; 2018 Sep; 43(17):4112-4115. PubMed ID: 30160729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability.
    Zhu S; Lo GQ; Kwong DL
    Opt Express; 2010 Nov; 18(24):25283-91. PubMed ID: 21164876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double V-groove ridge waveguides on a silicon substrate.
    Goel S; Pincenti JC; Naylor DL
    Appl Opt; 1993 Jan; 32(3):318-21. PubMed ID: 20802692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deposition and characterization of silica-based films by helicon-activated reactive evaporation applied to optical waveguide fabrication.
    Bulla DA; Li WT; Charles C; Boswell R; Ankiewicz A; Love J
    Appl Opt; 2004 May; 43(14):2978-85. PubMed ID: 15143826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler.
    Lin X; Hosseini A; Dou X; Subbaraman H; Chen RT
    Opt Express; 2013 Jan; 21(1):60-9. PubMed ID: 23388896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical waveguides in TiO₂ formed by He ion implantation.
    Bi ZF; Wang L; Liu XH; Zhang SM; Dong MM; Zhao QZ; Wu XL; Wang KM
    Opt Express; 2012 Mar; 20(6):6712-9. PubMed ID: 22418555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.