These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 18264402)

  • 1. Temperature-compensated cryogenic Fabry-Perot cavity.
    Wong EK; Notcutt M; Taylor CT; Mann AG; Blair DG
    Appl Opt; 1997 Nov; 36(33):8563-6. PubMed ID: 18264402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature analysis of low-expansion Fabry-Perot cavities.
    Fox RW
    Opt Express; 2009 Aug; 17(17):15023-31. PubMed ID: 19687980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable and rugged etalon for the Dynamics Explorer Fabry-Perot interferometer. 1: Design and construction.
    Rees D; Fuller-Rowell TJ; Lyons A; Killeen TL; Hays PB
    Appl Opt; 1982 Nov; 21(21):3896-902. PubMed ID: 20396337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expansivity of Fused Quartz Glass Measured Within 6 × 10
    Egan PF
    Int J Thermophys; 2024; 45(9):. PubMed ID: 39372425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Waveguide grating mirror in a fully suspended 10 meter Fabry-Perot cavity.
    Friedrich D; Barr BW; Brückner F; Hild S; Nelson J; Macarthur J; Plissi MV; Edgar MP; Huttner SH; Sorazu B; Kroker S; Britzger M; Kley EB; Danzmann K; Tünnermann A; Strain KA; Schnabel R
    Opt Express; 2011 Aug; 19(16):14955-63. PubMed ID: 21934857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabry-Perot cavity based on silica tube for strain sensing at high temperatures.
    Ferreira MS; Roriz P; Bierlich J; Kobelke J; Wondraczek K; Aichele C; Schuster K; Santos JL; Frazão O
    Opt Express; 2015 Jun; 23(12):16063-70. PubMed ID: 26193580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compressible Fabry-Perot refractometer.
    Andersson M; Eliasson L; Pendrill LR
    Appl Opt; 1987 Nov; 26(22):4835-40. PubMed ID: 20523456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbubble-based fiber-optic Fabry-Perot pressure sensor for high-temperature application.
    Li Z; Jia P; Fang G; Liang H; Liang T; Liu W; Xiong J
    Appl Opt; 2018 Mar; 57(8):1738-1743. PubMed ID: 29521953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sourceless optical fiber high temperature sensor.
    Tian Z; Yu Z; Liu B; Wang A
    Opt Lett; 2016 Jan; 41(2):195-8. PubMed ID: 26766672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-spherical-mirror test for radius of curvature measurement using a Fabry-Pérot cavity.
    Bitou Y; Sato O; Telada S
    Opt Express; 2019 May; 27(10):13664-13674. PubMed ID: 31163826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sapphire hard X-ray Fabry-Perot resonators for synchrotron experiments.
    Tsai YW; Wu YH; Chang YY; Liu WC; Liu HL; Chu CH; Chen PC; Lin PT; Fu CC; Chang SL
    J Synchrotron Radiat; 2016 May; 23(Pt 3):658-64. PubMed ID: 27140144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabry⁻Perot Cavity Sensing Probe with High Thermal Stability for an Acoustic Sensor by Structure Compensation.
    Cheng J; Zhou Y; Zou X
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30309042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transportable clock laser system with an instability of 1.6 × 10
    Herbers S; Häfner S; Dörscher S; Lücke T; Sterr U; Lisdat C
    Opt Lett; 2022 Oct; 47(20):5441-5444. PubMed ID: 36240384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Magnetic Field Sensor Based on a Magnetic Fluid-Filled FP-FBG Structure.
    Xia J; Wang F; Luo H; Wang Q; Xiong S
    Sensors (Basel); 2016 Apr; 16(5):. PubMed ID: 27136564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-loss silica-on-silicon two-dimensional Fabry-Perot cavity based on holographic Bragg reflectors.
    Greiner CM; Iazikov D; Mossberg TW
    Opt Lett; 2005 Jan; 30(1):38-40. PubMed ID: 15648630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information.
    Bitarafan MH; DeCorby RG
    Sensors (Basel); 2017 Jul; 17(8):. PubMed ID: 28758967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Q sapphire-rutile frequency-temperature compensated microwave dielectric resonators.
    Tobar ME; Krupka J; Hartnett JG; Ivanov EN; Woode RA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):830-6. PubMed ID: 18244235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultraprecise measurement of thermal coefficients of expansion.
    Jacobs SF; Bradford JN; Berthold Iii JW
    Appl Opt; 1970 Nov; 9(11):2477-80. PubMed ID: 20094290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A IR-Femtosecond Laser Hybrid Sensor to Measure the Thermal Expansion and Thermo-Optical Coefficient of Silica-Based FBG at High Temperatures.
    Li L; Lv D; Yang M; Xiong L; Luo J
    Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29373528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable multipass Fabry-Perot interferometer: design and analysis.
    Roychoudhuri C; Hercher M
    Appl Opt; 1977 Sep; 16(9):2514-20. PubMed ID: 20168960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.