These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 18264422)

  • 1. Collection of emission from an oscillating dipole inside a sphere: analytical integration over a circular aperture.
    Pendleton JD; Hill SC
    Appl Opt; 1997 Nov; 36(33):8729-37. PubMed ID: 18264422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling fluorescence collection from single molecules in microspheres: effects of position, orientation, and frequency.
    Hill SC; Saleheen HI; Barnes MD; Whitten WB; Ramsey JM
    Appl Opt; 1996 Nov; 35(31):6278-88. PubMed ID: 21127654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of planar dielectric interfaces on fluorescence emission and detection. Evanescent excitation with high-aperture collection.
    Burghardt TP; Thompson NL
    Biophys J; 1984 Dec; 46(6):729-37. PubMed ID: 6518253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Measurement of the Three-Dimensional Orientation of Excitation and Emission Dipoles.
    Karedla N; Stein SC; Hähnel D; Gregor I; Chizhik A; Enderlein J
    Phys Rev Lett; 2015 Oct; 115(17):173002. PubMed ID: 26551110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method.
    Khoury CG; Norton SJ; Vo-Dinh T
    Nanotechnology; 2010 Aug; 21(31):315203. PubMed ID: 20634565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collection of fluorescence from single molecules in microspheres: effects of illumination geometry.
    Hill SC; Barnes MD; Whitten WB; Ramsey JM
    Appl Opt; 1997 Jul; 36(19):4425-37. PubMed ID: 18259232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-scattering theory of light diffraction by a circular subwavelength aperture in a finitely conducting screen.
    Popov E; Nevière M; Sentenac A; Bonod N; Fehrembach AL; Wenger J; Lenne PF; Rigneault H
    J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):339-58. PubMed ID: 17206250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directional light emission by electric and magnetic dipoles near a nanosphere: an analytical approach based on the generalized Mie theory.
    Yao K; Zheng Y
    Opt Lett; 2021 Jan; 46(2):302-305. PubMed ID: 33449012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whispering-gallery mode resonators: Surface enhanced Raman scattering without plasmons.
    Ausman LK; Schatz GC
    J Chem Phys; 2008 Aug; 129(5):054704. PubMed ID: 18698918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles.
    Kerker M; Wang DS; Chew H
    Appl Opt; 1980 Oct; 19(19):3373-88. PubMed ID: 20234623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata.
    Kerker M; Wang DS; Chew H
    Appl Opt; 1980 Dec; 19(24):4159-74. PubMed ID: 20309031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light scattering from an optically active sphere into a circular aperture.
    Pendleton JD; Rosen DL
    Appl Opt; 1998 Nov; 37(33):7897-905. PubMed ID: 18301631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity.
    Hill SC; Pinnick RG; Niles S; Fell NF; Pan YL; Bottiger J; Bronk BV; Holler S; Chang RK
    Appl Opt; 2001 Jun; 40(18):3005-13. PubMed ID: 18357318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of the spatial nonlocality of the Kirkwood g-factor on the determination of the long wavelength dielectric functions in dipolar fluids.
    Fulton RL
    J Chem Phys; 2012 Feb; 136(8):084502. PubMed ID: 22380048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remote and autonomous temperature measurement based on 3D liquid crystal microlasers.
    Pirnat G; Humar M; Muševič I
    Opt Express; 2018 Sep; 26(18):22615-22625. PubMed ID: 30184919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dipole radiation within one-dimensional anisotropic microcavities: a simulation method.
    Penninck L; De Visschere P; Beeckman J; Neyts K
    Opt Express; 2011 Sep; 19(19):18558-76. PubMed ID: 21935225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Waveguide-coupled directional Raman radiation for surface analysis.
    Chen C; Li JY; Wang L; Lu DF; Qi ZM
    Phys Chem Chem Phys; 2015 Sep; 17(33):21278-87. PubMed ID: 25662793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence polarization spectroscopy at combined high-aperture excitation and detection: application to one-photon-excitation fluorescence microscopy.
    Fisz JJ
    J Phys Chem A; 2007 Sep; 111(35):8606-21. PubMed ID: 17691715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic plasmon-coupling dimerization of a pair of spherical electron gases.
    Gumbs G; Iurov A; Balassis A; Huang D
    J Phys Condens Matter; 2014 Apr; 26(13):135601. PubMed ID: 24625751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular near-field antenna effect in resonance hyper-Raman scattering: intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions.
    Shimada R; Hamaguchi HO
    J Chem Phys; 2014 May; 140(20):204506. PubMed ID: 24880300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.