BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 1826459)

  • 1. Neuroanatomical structures involved in the action of the 5-HT3 antagonist ondansetron: a 2-deoxyglucose autoradiographic study in the rat.
    Mitchell EA; Pratt JA
    Brain Res; 1991 Jan; 538(2):289-94. PubMed ID: 1826459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the GABA receptor agonist, progabide, upon local cerebral glucose utilization.
    Cudennec A; Duverger D; Lloyd KG; MacKenzie ET; McCulloch J; Motohashi N; Nishikawa T; Scatton B
    Brain Res; 1987 Oct; 423(1-2):162-72. PubMed ID: 2823984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of FG 7142 upon local cerebral glucose utilization suggest overlap between limbic structures important in anxiety and convulsions.
    Pratt JA; Laurie DJ; McCulloch J
    Brain Res; 1988 Dec; 475(2):218-31. PubMed ID: 3214732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of effects of the kappa-opioid agonist CI-977 on cerebral glucose utilization in rat brain.
    Mackay KB; McCulloch J
    Brain Res; 1994 Apr; 642(1-2):160-8. PubMed ID: 8032876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flumazenil induces localised increases in glucose utilization during diazepam withdrawal in rats.
    Laurie DJ; Pratt JA
    Brain Res; 1993 Dec; 631(2):277-86. PubMed ID: 8131056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alcohol-naïve alcohol-preferring (P) rats exhibit higher local cerebral glucose utilization than alcohol-nonpreferring (NP) and Wistar rats.
    Smith DG; Learn JE; McBride WJ; Lumeng L; Li TK; Murphy JM
    Alcohol Clin Exp Res; 2001 Sep; 25(9):1309-16. PubMed ID: 11584150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential cerebrovascular and metabolic responses in specific neural systems elicited from the centromedian-parafascicular complex.
    Mraovitch S; Calando Y; Pinard E; Pearce WJ; Seylaz J
    Neuroscience; 1992 Jul; 49(2):451-66. PubMed ID: 1436477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the 5-HT1A partial agonists gepirone, ipsapirone and buspirone on local cerebral glucose utilization in the conscious rat.
    Grasby PM; Sharp T; Allen T; Kelly PA; Grahame-Smith DG
    Psychopharmacology (Berl); 1992; 106(1):97-101. PubMed ID: 1346724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of methylenedioxymethamphetamine on local cerebral glucose utilization in the rat.
    Wilkerson G; London ED
    Neuropharmacology; 1989 Oct; 28(10):1129-38. PubMed ID: 2572994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the effect of buspirone and 1-(2-pyrimidinyl)-piperazine on cerebral glucose utilization in the rat.
    Grasby P; Sharp T; Moorman J; Grahame-Smith D
    Eur J Pharmacol; 1993 Jan; 230(1):41-6. PubMed ID: 8094054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regionally selective and dose-dependent effects of the ampakines Org 26576 and Org 24448 on local cerebral glucose utilisation in the mouse as assessed by 14C-2-deoxyglucose autoradiography.
    Jordan GR; McCulloch J; Shahid M; Hill DR; Henry B; Horsburgh K
    Neuropharmacology; 2005 Aug; 49(2):254-64. PubMed ID: 15993447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limbic brain structures are important sites of kappa-opioid receptor-mediated actions in the rat: a [14C]-2-deoxyglucose study.
    Ableitner A; Herz A
    Brain Res; 1989 Jan; 478(2):326-36. PubMed ID: 2538203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dorsal raphe stimulation on cerebral glucose utilization in the anaesthetized rat.
    Bonvento G; Lacombe P; MacKenzie ET; Seylaz J
    Brain Res; 1991 Dec; 567(2):325-7. PubMed ID: 1817737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic mapping of the effects of intravenous methamphetamine administration in freely moving rats.
    Pontieri FE; Crane AM; Seiden LS; Kleven MS; Porrino LJ
    Psychopharmacology (Berl); 1990; 102(2):175-82. PubMed ID: 1980372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apomorphine alters prey-catching patterns in the common toad: behavioral experiments and (14)C-2-deoxyglucose brain mapping studies.
    Glagow M; Ewert J
    Brain Behav Evol; 1999 Oct; 54(4):223-42. PubMed ID: 10592384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise-induced changes in local cerebral glucose utilization in the rat.
    Vissing J; Andersen M; Diemer NH
    J Cereb Blood Flow Metab; 1996 Jul; 16(4):729-36. PubMed ID: 8964814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local cerebral glucose utilization in the AS/AGU rat: a mutant with movement disorders.
    Lam AG; Campbell JM; Bennett NK; Payne AP; Davies RW; Sutcliffe RG; McCulloch J
    Eur J Neurosci; 1998 Jun; 10(6):1963-7. PubMed ID: 9753083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscimol-associated changes in local cerebral glucose use following chronic diazepam administration.
    Brett RR; Pratt JA
    Brain Res; 1991 Sep; 558(2):280-8. PubMed ID: 1782545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive (AP7) and non-competitive (MK-801) NMDA receptor antagonists differentially alter glucose utilization in rat cortex.
    Clow DW; Lee SJ; Hammer RP
    Synapse; 1991 Apr; 7(4):260-8. PubMed ID: 1828310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative autoradiographic measurement of local cerebral glucose utilization in freely moving rats during postnatal development.
    Nehlig A; de Vasconcelos AP; Boyet S
    J Neurosci; 1988 Jul; 8(7):2321-33. PubMed ID: 3249228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.