BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 18264660)

  • 1. Proteome analysis of soybean hypocotyl and root under salt stress.
    Aghaei K; Ehsanpour AA; Shah AH; Komatsu S
    Amino Acids; 2009 Jan; 36(1):91-8. PubMed ID: 18264660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of flooding stress responsible cascades in root and hypocotyl of soybean using proteome analysis.
    Komatsu S; Sugimoto T; Hoshino T; Nanjo Y; Furukawa K
    Amino Acids; 2010 Mar; 38(3):729-38. PubMed ID: 19333721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteome analysis of tobacco leaves under salt stress.
    Razavizadeh R; Ehsanpour AA; Ahsan N; Komatsu S
    Peptides; 2009 Sep; 30(9):1651-9. PubMed ID: 19573571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of cucumber seedling roots subjected to salt stress.
    Du CX; Fan HF; Guo SR; Tezuka T; Li J
    Phytochemistry; 2010 Sep; 71(13):1450-9. PubMed ID: 20580043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques.
    Komatsu S; Yamamoto R; Nanjo Y; Mikami Y; Yunokawa H; Sakata K
    J Proteome Res; 2009 Oct; 8(10):4766-78. PubMed ID: 19658438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of plasma membrane proteome in soybean and application to flooding stress response.
    Komatsu S; Wada T; Abaléa Y; Nouri MZ; Nanjo Y; Nakayama N; Shimamura S; Yamamoto R; Nakamura T; Furukawa K
    J Proteome Res; 2009 Oct; 8(10):4487-99. PubMed ID: 19658398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of calnexin in soybean roots and hypocotyls under osmotic stress.
    Nouri MZ; Hiraga S; Yanagawa Y; Sunohara Y; Matsumoto H; Komatsu S
    Phytochemistry; 2012 Feb; 74():20-9. PubMed ID: 22169501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New changes in the plasma-membrane-associated proteome of rice roots under salt stress.
    Cheng Y; Qi Y; Zhu Q; Chen X; Wang N; Zhao X; Chen H; Cui X; Xu L; Zhang W
    Proteomics; 2009 Jun; 9(11):3100-14. PubMed ID: 19526560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteome analysis of wheat leaf under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE).
    Gao L; Yan X; Li X; Guo G; Hu Y; Ma W; Yan Y
    Phytochemistry; 2011 Jul; 72(10):1180-91. PubMed ID: 21257186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza.
    Tada Y; Kashimura T
    Plant Cell Physiol; 2009 Mar; 50(3):439-46. PubMed ID: 19131358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C(4) plant.
    Sobhanian H; Motamed N; Jazii FR; Nakamura T; Komatsu S
    J Proteome Res; 2010 Jun; 9(6):2882-97. PubMed ID: 20397718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean.
    Zhen Y; Qi JL; Wang SS; Su J; Xu GH; Zhang MS; Miao L; Peng XX; Tian D; Yang YH
    Physiol Plant; 2007 Dec; 131(4):542-54. PubMed ID: 18251846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genotypic variability among soybean genotypes under NaCl stress and proteome analysis of salt-tolerant genotype.
    Hakeem KR; Khan F; Chandna R; Siddiqui TO; Iqbal M
    Appl Biochem Biotechnol; 2012 Dec; 168(8):2309-29. PubMed ID: 23090685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics approach for identifying osmotic-stress-related proteins in soybean roots.
    Toorchi M; Yukawa K; Nouri MZ; Komatsu S
    Peptides; 2009 Dec; 30(12):2108-17. PubMed ID: 19747515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques.
    Komatsu S; Yamamoto A; Nakamura T; Nouri MZ; Nanjo Y; Nishizawa K; Furukawa K
    J Proteome Res; 2011 Sep; 10(9):3993-4004. PubMed ID: 21766870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots.
    Chitteti BR; Peng Z
    J Proteome Res; 2007 May; 6(5):1718-27. PubMed ID: 17385905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organ-specific proteomics analysis for identification of response mechanism in soybean seedlings under flooding stress.
    Khatoon A; Rehman S; Hiraga S; Makino T; Komatsu S
    J Proteomics; 2012 Oct; 75(18):5706-23. PubMed ID: 22850269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress.
    Yin X; Sakata K; Komatsu S
    J Proteome Res; 2014 Dec; 13(12):5618-34. PubMed ID: 25316100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentially delayed root proteome responses to salt stress in sugar cane varieties.
    Pacheco CM; Pestana-Calsa MC; Gozzo FC; Mansur Custodio Nogueira RJ; Menossi M; Calsa T
    J Proteome Res; 2013 Dec; 12(12):5681-95. PubMed ID: 24251627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome analysis of early-stage soybean seedlings under flooding stress.
    Hashiguchi A; Sakata K; Komatsu S
    J Proteome Res; 2009 Apr; 8(4):2058-69. PubMed ID: 19714819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.