These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. When microfluidic devices go bad. How does fouling occur in microfluidic devices, and what can be done about it? Mukhopadhyay R Anal Chem; 2005 Nov; 77(21):429A-432A. PubMed ID: 16285143 [No Abstract] [Full Text] [Related]
4. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628 [TBL] [Abstract][Full Text] [Related]
5. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches. Lai CW; Lin YH; Lee GB Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177 [TBL] [Abstract][Full Text] [Related]
7. Stem cells in microfluidics. van Noort D; Ong SM; Zhang C; Zhang S; Arooz T; Yu H Biotechnol Prog; 2009; 25(1):52-60. PubMed ID: 19205022 [TBL] [Abstract][Full Text] [Related]
8. Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase. Chae SK; Lee CH; Lee SH; Kim TS; Kang JY Lab Chip; 2009 Jul; 9(13):1957-61. PubMed ID: 19532972 [TBL] [Abstract][Full Text] [Related]
10. Microflow electroorganic synthesis without supporting electrolyte. Horcajada R; Okajima M; Suga S; Yoshida J Chem Commun (Camb); 2005 Mar; (10):1303-5. PubMed ID: 15742059 [TBL] [Abstract][Full Text] [Related]
11. In situ deposition and patterning of single-walled carbon nanotubes by laminar flow and controlled flocculation in microfluidic channels. Park JU; Meitl MA; Hur SH; Usrey ML; Strano MS; Kenis PJ; Rogers JA Angew Chem Int Ed Engl; 2006 Jan; 45(4):581-5. PubMed ID: 16342126 [No Abstract] [Full Text] [Related]
12. Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels. Maenaka H; Yamada M; Yasuda M; Seki M Langmuir; 2008 Apr; 24(8):4405-10. PubMed ID: 18327961 [TBL] [Abstract][Full Text] [Related]
14. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography. Sundararajan N; Kim D; Berlin AA Lab Chip; 2005 Mar; 5(3):350-4. PubMed ID: 15726212 [TBL] [Abstract][Full Text] [Related]
15. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Park JS; Song SH; Jung HI Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305 [TBL] [Abstract][Full Text] [Related]
17. Lateral displacement as a function of particle size using a piecewise curved planar interdigitated electrode array. Han KH; Han SI; Frazier AB Lab Chip; 2009 Oct; 9(20):2958-64. PubMed ID: 19789750 [TBL] [Abstract][Full Text] [Related]
18. Multiple-channel emulsion chips utilizing pneumatic choppers for biotechnology applications. Lin YH; Chen CT; Huang LL; Lee GB Biomed Microdevices; 2007 Dec; 9(6):833-43. PubMed ID: 17577672 [TBL] [Abstract][Full Text] [Related]
19. Quantitative microfluidic separation of DNA in self-assembled magnetic matrixes. Minc N; Fütterer C; Dorfman KD; Bancaud A; Gosse C; Goubault C; Viovy JL Anal Chem; 2004 Jul; 76(13):3770-6. PubMed ID: 15228353 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of composite emulsions and complex foams with the use of microfluidic flow-focusing devices. Hashimoto M; Garstecki P; Whitesides GM Small; 2007 Oct; 3(10):1792-802. PubMed ID: 17890646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]