These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 18264988)
1. Evaluation of separation in gradient elution ion chromatography by combining several retention models and objective functions. Bolanca T; Cerjan-Stefanović S; Lusa M; Ukić S; Rogosić M J Sep Sci; 2008 Mar; 31(4):705-13. PubMed ID: 18264988 [TBL] [Abstract][Full Text] [Related]
2. Development of an ion chromatographic gradient retention model from isocratic elution experiments. Bolanca T; Cerjan-Stefanović S; Lusa M; Rogosić M; Ukić S J Chromatogr A; 2006 Jul; 1121(2):228-35. PubMed ID: 16698028 [TBL] [Abstract][Full Text] [Related]
3. Combination of artificial neural network technique and linear free energy relationship parameters in the prediction of gradient retention times in liquid chromatography. Fatemi MH; Abraham MH; Poole CF J Chromatogr A; 2008 May; 1190(1-2):241-52. PubMed ID: 18395736 [TBL] [Abstract][Full Text] [Related]
4. Prediction of the chromatographic signal in gradient elution ion chromatography. Bolanca T; Stefanović SC; Ukić S; Rogosić M; Lusa M J Sep Sci; 2009 Sep; 32(17):2877-84. PubMed ID: 19714654 [TBL] [Abstract][Full Text] [Related]
5. Prediction of analyte retention for ion chromatography separations performed using elution profiles comprising multiple isocratic and gradient steps. Shellie RA; Ng BK; Dicinoski GW; Poynter SD; O'Reilly JW; Pohl CA; Haddad PR Anal Chem; 2008 Apr; 80(7):2474-82. PubMed ID: 18327920 [TBL] [Abstract][Full Text] [Related]
6. Application of artificial neural networks for gradient elution retention modelling in ion chromatography. Bolanca T; Cerjan-Stefanović S; Regelja M; Regelja H; Loncarić S J Sep Sci; 2005 Aug; 28(13):1427-33. PubMed ID: 16158983 [TBL] [Abstract][Full Text] [Related]
7. Application of retention modelling to the simulation of separation of organic anions in suppressed ion chromatography. Zakaria P; Dicinoski GW; Ng BK; Shellie RA; Hanna-Brown M; Haddad PR J Chromatogr A; 2009 Sep; 1216(38):6600-10. PubMed ID: 19683244 [TBL] [Abstract][Full Text] [Related]
8. Retention controlling and peak shape simulation in anion chromatography using multiple equilibrium model and stochastic theory. Horváth K; Olajos M; Felinger A; Hajós P J Chromatogr A; 2008 May; 1189(1-2):42-51. PubMed ID: 17719052 [TBL] [Abstract][Full Text] [Related]
9. Equilibrium-based approach for prediction of matrix-related interferences in anion chromatography. Hajós P; Horváth K J Chromatogr A; 2008 Jul; 1198-1199():101-6. PubMed ID: 18550073 [TBL] [Abstract][Full Text] [Related]
10. Optimization of artificial neural networks used for retention modelling in ion chromatography. Srecnik G; Debeljak Z; Cerjan-Stefanović S; Novic M; Bolancab T J Chromatogr A; 2002 Oct; 973(1-2):47-59. PubMed ID: 12437163 [TBL] [Abstract][Full Text] [Related]
11. Determination of glycerophosphate and other anions in dentifrices by ion chromatography. Chen Y; Ye M; Cui H; Wu F; Zhu Y; Fritz JS J Chromatogr A; 2006 Jun; 1118(1):155-9. PubMed ID: 16516904 [TBL] [Abstract][Full Text] [Related]
12. Optimization of artificial neural network for retention modeling in high-performance liquid chromatography. Vasiljević T; Onjia A; Cokesa D; Lausević M Talanta; 2004 Oct; 64(3):785-90. PubMed ID: 18969673 [TBL] [Abstract][Full Text] [Related]
13. Development of an ion chromatographic method for determination of inorganic anions in surface water by using computer-assisted gradient optimization methodology. Bolanča T; Ukić S; Ruždjak AM Acta Chim Slov; 2011 Mar; 58(1):120-6. PubMed ID: 24061951 [TBL] [Abstract][Full Text] [Related]
14. Artificial neural networks in analysis of indinavir and its degradation products retention. Jancić-Stojanović B; Ivanović D; Malenović A; Medenica M Talanta; 2009 Apr; 78(1):107-12. PubMed ID: 19174211 [TBL] [Abstract][Full Text] [Related]
15. Quantitative structure-retention relationships of pesticides in reversed-phase high-performance liquid chromatography based on WHIM and GETAWAY molecular descriptors. D'Archivio AA; Maggi MA; Mazzeo P; Ruggieri F Anal Chim Acta; 2008 Nov; 628(2):162-72. PubMed ID: 18929004 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous determination of iron and aluminium by differential kinetic spectrophotometric method and chemometrics. Ni Y; Huang C; Kokot S Anal Chim Acta; 2007 Sep; 599(2):209-18. PubMed ID: 17870283 [TBL] [Abstract][Full Text] [Related]
17. Optimization of gradient elution conditions in multicomponent preparative liquid chromatography. Shan Y; Seidel-Morgenstern A J Chromatogr A; 2005 Nov; 1093(1-2):47-58. PubMed ID: 16233870 [TBL] [Abstract][Full Text] [Related]
18. Computational method for modeling of gradient separation in ion-exchange chromatography. Drgan V; Novic M; Novic M J Chromatogr A; 2009 Sep; 1216(37):6502-10. PubMed ID: 19679313 [TBL] [Abstract][Full Text] [Related]
19. Retention models for isocratic and gradient elution in reversed-phase liquid chromatography. Nikitas P; Pappa-Louisi A J Chromatogr A; 2009 Mar; 1216(10):1737-55. PubMed ID: 18838140 [TBL] [Abstract][Full Text] [Related]
20. Computer-assisted method development in liquid chromatography-mass spectrometry: new proposals. García-Lavandeira J; Losada B; Martínez-Pontevedra JA; Lores M; Cela R J Chromatogr A; 2008 Oct; 1208(1-2):116-25. PubMed ID: 18799162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]