These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 18265514)
1. Light-induced generation of electric potential difference in membranes of purple and green sulfur bacteria. Krasinskaya NP; Samuilov VD J Bioenerg Biomembr; 1977 Jun; 9(3):171-80. PubMed ID: 18265514 [TBL] [Abstract][Full Text] [Related]
2. [Photoinduced reduction of NAD(P) in the cells of green sulfur bacteria]. IvanovskiÄ RN Mikrobiologiia; 1975; 44(6):965-9. PubMed ID: 2843 [TBL] [Abstract][Full Text] [Related]
4. Fast stages of photoelectric processes in biological membranes. III. Bacterial photosynthetic redox system. Drachev LA; Semenov AYu ; Skulachev VP; Smirnova IA; Chamorovsky SK; Kononenko AA; Rubin AB; Uspenskaya NYa Eur J Biochem; 1981 Jul; 117(3):483-9. PubMed ID: 6793358 [TBL] [Abstract][Full Text] [Related]
5. Generation of electric current by chromatophores of Rhodospirillum rubrum and reconstitution of electrogenic function in subchromatophore pigment-protein complexes. Drachev LA; Frolov VN; Kaulen AD; Kondrashin AA; Samuilov VD; Semenov AY; Skulachev VP Biochim Biophys Acta; 1976 Sep; 440(3):637-60. PubMed ID: 61042 [TBL] [Abstract][Full Text] [Related]
6. Enzymes of the reductive pentose phosphate cycle in the purple and in the green photosynthetic sulphur bacteria. SMILLIE RM; RIGOPOULOS N; KELLY H Biochim Biophys Acta; 1962 Jan; 56():612-4. PubMed ID: 13914044 [No Abstract] [Full Text] [Related]
7. Active transport in the photosynthetic bacterium Chromatium vinosum. Knaff DB Arch Biochem Biophys; 1978 Aug; 189(2):225-30. PubMed ID: 30400 [No Abstract] [Full Text] [Related]
8. The light-reaction of the green photosynthetic bacterium Chlorobium limicola F. thiosulfatophilum at cryogenic temperatures. Knaff DB; Olson JM; Prince RC FEBS Lett; 1979 Feb; 98(2):285-9. PubMed ID: 421901 [No Abstract] [Full Text] [Related]
9. The effects of uncoupler on the rates of cytochrome oxidation and reduction in the photosynthetic bacterium, Chromatium. Evidence for a possible cytochrome switching. Rubin AB; Devault D Biochim Biophys Acta; 1978 Mar; 501(3):440-8. PubMed ID: 629959 [TBL] [Abstract][Full Text] [Related]
10. The role of the membrane potential in active transport by the photosynthetic bacterium Chromatium vinosum. Knaff DB; Whetstone R; Carr JW FEBS Lett; 1979 Mar; 99(2):283-6. PubMed ID: 428553 [No Abstract] [Full Text] [Related]
11. ATP-dependent K+ uptake by a photosynthetic purple sulfur bacterium. Davidson VL; Knaff DB Arch Biochem Biophys; 1982 Feb; 213(2):358-62. PubMed ID: 7073281 [No Abstract] [Full Text] [Related]
12. [Formation of chlorophyll by purple and green bacteria during their photoautotrophic and photoheterotrophic development]. MOSHENTSEVA LV; KONDRAT'EVA EN Mikrobiologiia; 1962; 31():199-202. PubMed ID: 14476474 [No Abstract] [Full Text] [Related]
13. Delayed fluorescence from bacteriochlorophyll in Chromatium vinosum chromatophores. Arata H; Takamiya K; Nishimura M Biochim Biophys Acta; 1977 Jan; 459(1):36-46. PubMed ID: 12813 [TBL] [Abstract][Full Text] [Related]
14. PHOTOREDUCTION OF UBIQUINONE AND PHOTOOXIDIATION OF PHENAZINE METHOSULFATE BY CHROMATOPHORES OF PHOTOSYNTHETIC BACTERIA AND BACTERIOCHLOROPHYLL. ZAUGG WS; VERNON LP; TIRPACK A Proc Natl Acad Sci U S A; 1964 Feb; 51(2):232-8. PubMed ID: 14128127 [No Abstract] [Full Text] [Related]
15. Light-induced potential and current across a large bacteriorhodopsin-asolectin planar membrane stabilized on a polyacrylamide gel surface. Setaka M; Satoh N; Kobayashi T; Hongo T; Kwan T; Yamaguchi A; Futai M J Biochem; 1986 Mar; 99(3):777-83. PubMed ID: 2423507 [TBL] [Abstract][Full Text] [Related]