These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 18265514)

  • 1. Light-induced generation of electric potential difference in membranes of purple and green sulfur bacteria.
    Krasinskaya NP; Samuilov VD
    J Bioenerg Biomembr; 1977 Jun; 9(3):171-80. PubMed ID: 18265514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Photoinduced reduction of NAD(P) in the cells of green sulfur bacteria].
    IvanovskiÄ­ RN
    Mikrobiologiia; 1975; 44(6):965-9. PubMed ID: 2843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytochrome b and photosynthetic sulfur bacteria.
    Knaff DB; Buchanan BB
    Biochim Biophys Acta; 1975 Mar; 376(3):549-60. PubMed ID: 1125222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast stages of photoelectric processes in biological membranes. III. Bacterial photosynthetic redox system.
    Drachev LA; Semenov AYu ; Skulachev VP; Smirnova IA; Chamorovsky SK; Kononenko AA; Rubin AB; Uspenskaya NYa
    Eur J Biochem; 1981 Jul; 117(3):483-9. PubMed ID: 6793358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of electric current by chromatophores of Rhodospirillum rubrum and reconstitution of electrogenic function in subchromatophore pigment-protein complexes.
    Drachev LA; Frolov VN; Kaulen AD; Kondrashin AA; Samuilov VD; Semenov AY; Skulachev VP
    Biochim Biophys Acta; 1976 Sep; 440(3):637-60. PubMed ID: 61042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymes of the reductive pentose phosphate cycle in the purple and in the green photosynthetic sulphur bacteria.
    SMILLIE RM; RIGOPOULOS N; KELLY H
    Biochim Biophys Acta; 1962 Jan; 56():612-4. PubMed ID: 13914044
    [No Abstract]   [Full Text] [Related]  

  • 7. Active transport in the photosynthetic bacterium Chromatium vinosum.
    Knaff DB
    Arch Biochem Biophys; 1978 Aug; 189(2):225-30. PubMed ID: 30400
    [No Abstract]   [Full Text] [Related]  

  • 8. The light-reaction of the green photosynthetic bacterium Chlorobium limicola F. thiosulfatophilum at cryogenic temperatures.
    Knaff DB; Olson JM; Prince RC
    FEBS Lett; 1979 Feb; 98(2):285-9. PubMed ID: 421901
    [No Abstract]   [Full Text] [Related]  

  • 9. The effects of uncoupler on the rates of cytochrome oxidation and reduction in the photosynthetic bacterium, Chromatium. Evidence for a possible cytochrome switching.
    Rubin AB; Devault D
    Biochim Biophys Acta; 1978 Mar; 501(3):440-8. PubMed ID: 629959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the membrane potential in active transport by the photosynthetic bacterium Chromatium vinosum.
    Knaff DB; Whetstone R; Carr JW
    FEBS Lett; 1979 Mar; 99(2):283-6. PubMed ID: 428553
    [No Abstract]   [Full Text] [Related]  

  • 11. ATP-dependent K+ uptake by a photosynthetic purple sulfur bacterium.
    Davidson VL; Knaff DB
    Arch Biochem Biophys; 1982 Feb; 213(2):358-62. PubMed ID: 7073281
    [No Abstract]   [Full Text] [Related]  

  • 12. [Formation of chlorophyll by purple and green bacteria during their photoautotrophic and photoheterotrophic development].
    MOSHENTSEVA LV; KONDRAT'EVA EN
    Mikrobiologiia; 1962; 31():199-202. PubMed ID: 14476474
    [No Abstract]   [Full Text] [Related]  

  • 13. Delayed fluorescence from bacteriochlorophyll in Chromatium vinosum chromatophores.
    Arata H; Takamiya K; Nishimura M
    Biochim Biophys Acta; 1977 Jan; 459(1):36-46. PubMed ID: 12813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PHOTOREDUCTION OF UBIQUINONE AND PHOTOOXIDIATION OF PHENAZINE METHOSULFATE BY CHROMATOPHORES OF PHOTOSYNTHETIC BACTERIA AND BACTERIOCHLOROPHYLL.
    ZAUGG WS; VERNON LP; TIRPACK A
    Proc Natl Acad Sci U S A; 1964 Feb; 51(2):232-8. PubMed ID: 14128127
    [No Abstract]   [Full Text] [Related]  

  • 15. Light-induced potential and current across a large bacteriorhodopsin-asolectin planar membrane stabilized on a polyacrylamide gel surface.
    Setaka M; Satoh N; Kobayashi T; Hongo T; Kwan T; Yamaguchi A; Futai M
    J Biochem; 1986 Mar; 99(3):777-83. PubMed ID: 2423507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of biological molecular generators of electric current. Bacteriochlorophyll and plant chlorophyll complexes.
    Barsky EL; Dancshazy Z; Drachey LA; Il'ina MD; Jasaitis AA; Kondrashin AA; Samuilov VD; Skulachev VP
    J Biol Chem; 1976 Nov; 251(22):7066-71. PubMed ID: 825514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Comparative study of light-harvesting complexes of purple photosynthetic bacteria Chromatium minutissimum and Rhodopseudomonas palustris].
    Erokhin IuE; Chugunov VA; Makhneva ZK; Agrikova IM; Shanturova TV
    Biokhimiia; 1977 Oct; 42(10):1817-24. PubMed ID: 922068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delayed fluorescence from bacteriochlorophyll in Chromatium vinosum chromatophores: characteristics in the presence of o-phenanthroline.
    Arata H; Takamiya K; Nishimura M
    J Biochem; 1977 Apr; 81(4):1133-9. PubMed ID: 881414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid sequence of a ferredoxin from Chlorobium thiosulfatophilum strain Tassajara, a photosynthetic green sulfur bacterium.
    Hase T; Wakabayashi S; Matsubara H; Evans MC; Jennings JV
    J Biochem; 1978 May; 83(5):1321-5. PubMed ID: 659399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Enzymes of carbohydrate metabolism in phototrophic bacteria].
    Krasil'nikova EN
    Mikrobiologiia; 1975; 44(1):5-10. PubMed ID: 125844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.