BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 18266057)

  • 21. Engineering plants for the phytoremediation of RDX in the presence of the co-contaminating explosive TNT.
    Rylott EL; Budarina MV; Barker A; Lorenz A; Strand SE; Bruce NC
    New Phytol; 2011 Oct; 192(2):405-13. PubMed ID: 21729248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monodehydroascorbate reductase mediates TNT toxicity in plants.
    Johnston EJ; Rylott EL; Beynon E; Lorenz A; Chechik V; Bruce NC
    Science; 2015 Sep; 349(6252):1072-5. PubMed ID: 26339024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polysaccharides from Grateloupia filicina enhance tolerance of rice seeds (Oryza sativa L.) under salt stress.
    Liu H; Chen X; Song L; Li K; Zhang X; Liu S; Qin Y; Li P
    Int J Biol Macromol; 2019 Mar; 124():1197-1204. PubMed ID: 30503791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced transformation of TNT by Arabidopsis plants expressing an old yellow enzyme.
    Zhu B; Peng RH; Fu XY; Jin XF; Zhao W; Xu J; Han HJ; Gao JJ; Xu ZS; Bian L; Yao QH
    PLoS One; 2012; 7(7):e39861. PubMed ID: 22808068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulating uptake and transport of TNT by plants using STELLA.
    Ouyang Y; Huang CH; Huang DY; Lin D; Cui L
    Chemosphere; 2007 Oct; 69(8):1245-52. PubMed ID: 17655913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil.
    Liu H; Zhang J; Christie P; Zhang F
    Sci Total Environ; 2008 May; 394(2-3):361-8. PubMed ID: 18325566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biotransformation of trinitrotoluene (TNT) by Pseudomonas spp. isolated from a TNT-contaminated environment.
    Chien CC; Kao CM; Chen DY; Chen SC; Chen CC
    Environ Toxicol Chem; 2014 May; 33(5):1059-63. PubMed ID: 24549634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulation of phytoremediation of a TNT-contaminated soil using the CTSPAC model.
    Ouyang Y; Shinde D; Ma LQ
    J Environ Qual; 2005; 34(5):1490-6. PubMed ID: 16091601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of iron plaque on the uptake and accumulation of chromium by rice (Oryza sativa L.) seedlings: Insights from hydroponic and soil cultivation.
    Xu B; Wang F; Zhang Q; Lan Q; Liu C; Guo X; Cai Q; Chen Y; Wang G; Ding J
    Ecotoxicol Environ Saf; 2018 Oct; 162():51-58. PubMed ID: 29960914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of mechanisms involved in seed germination enhancement, enzymatic activity and seedling growth of rice (Oryza Sativa L.) using LPDBD (Ar+Air) plasma.
    Billah M; Karmakar S; Mina FB; Haque MN; Rashid MM; Hasan MF; Acharjee UK; Talukder MR
    Arch Biochem Biophys; 2021 Feb; 698():108726. PubMed ID: 33326801
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Leaching of contaminated leaves following uptake and phytoremediation of RDX, HMX, and TNT by poplar.
    Yoon JM; Van Aken B; Schnoor JL
    Int J Phytoremediation; 2006; 8(1):81-94. PubMed ID: 16615309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degradation of 2,4,6-trinitrotoluene by selected helophytes.
    Nepovim A; Hebner A; Soudek P; Gerth A; Thomas H; Smrcek S; Vanek T
    Chemosphere; 2005 Sep; 60(10):1454-61. PubMed ID: 16054915
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant.
    Yang J; Liu Z; Wan X; Zheng G; Yang J; Zhang H; Guo L; Wang X; Zhou X; Guo Q; Xu R; Zhou G; Peters M; Zhu G; Wei R; Tian L; Han X
    Ecotoxicol Environ Saf; 2016 Jun; 128():206-12. PubMed ID: 26946285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of 2,4,6-trinitrotoluene (TNT) concentration on the degradation of TNT in explosive-contaminated soils by the white rot fungus Phanerochaete chrysosporium.
    Spiker JK; Crawford DL; Crawford RL
    Appl Environ Microbiol; 1992 Sep; 58(9):3199-202. PubMed ID: 1444437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toxicity of trinitrotoluene to sheepshead minnows in water exposures.
    Lotufo GR; Blackburn WM; Gibson AB
    Ecotoxicol Environ Saf; 2010 Jul; 73(5):718-26. PubMed ID: 20219247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial community structure and metabolome profiling characteristics of soil contaminated by TNT, RDX, and HMX.
    Yang X; Lai JL; Zhang Y; Luo XG; Han MW; Zhao SP
    Environ Pollut; 2021 Sep; 285():117478. PubMed ID: 34087636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microtox toxicity test: detoxification of TNT and RDX contaminated solutions by poplar tissue cultures.
    Flokstra BR; Aken BV; Schnoor JL
    Chemosphere; 2008 May; 71(10):1970-6. PubMed ID: 18400248
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reactive Oxygen Species Generated by NADPH Oxidases Promote Radicle Protrusion and Root Elongation during Rice Seed Germination.
    Li WY; Chen BX; Chen ZJ; Gao YT; Chen Z; Liu J
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28098759
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of a 2,4,6-trinitrotoluene-contaminated site using Aporrectodea rosea and Eisenia andrei in mesocosms.
    Robidoux PY; Svendsen C; Sarrazin M; Thiboutot S; Ampleman G; Hawari J; Weeks JM; Sunahara GI
    Arch Environ Contam Toxicol; 2005 Jan; 48(1):56-67. PubMed ID: 15657806
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Foliar application of aspartic acid lowers cadmium uptake and Cd-induced oxidative stress in rice under Cd stress.
    Rizwan M; Ali S; Zaheer Akbar M; Shakoor MB; Mahmood A; Ishaque W; Hussain A
    Environ Sci Pollut Res Int; 2017 Sep; 24(27):21938-21947. PubMed ID: 28780693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.