BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 18266077)

  • 21. Occurrence of deoxynivalenol and Fusarium graminearum in Argentinian wheat.
    Dalcero A; Torres A; Etcheverry M; Chulze S; Varsavsky E
    Food Addit Contam; 1997 Jan; 14(1):11-4. PubMed ID: 9059578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Production of trichothecenes and zearalenone by isolates of Fusarium spp. from Argentinian maize.
    Molto GA; Gonzalez HH; Resnik SL; Pereyra Gonzalez A
    Food Addit Contam; 1997 Apr; 14(3):263-8. PubMed ID: 9135723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Incidence of trichothecenes and zearalenone in poultry feed mixtures from Slovakia.
    Labuda R; Parich A; Berthiller F; Tancinová D
    Int J Food Microbiol; 2005 Nov; 105(1):19-25. PubMed ID: 16046021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toxigenic potential of Fusarium graminearum isolated from maize of northwest Argentina.
    Sampietro DA; Apud GR; Belizán MM; Vattuone MA; Catalán CA
    Braz J Microbiol; 2013; 44(2):417-22. PubMed ID: 24294230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Levels of fungi and mycotoxins in samples of grain and grain dust collected on farms in Eastern Poland.
    Krysińska-Traczyk E; Kiecana I; Perkowski J; Dutkiewicz J
    Ann Agric Environ Med; 2001; 8(2):269-74. PubMed ID: 11748887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mycoflora and deoxynivalenol in whole wheat grains (Triticum aestivum L.) from Southern Brazil.
    Savi GD; Piacentini KC; Tibola CS; Scussel VM
    Food Addit Contam Part B Surveill; 2014; 7(3):232-7. PubMed ID: 25029408
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative study on the natural occurrence of Fusarium mycotoxins (trichothecenes and zearalenone) in corn and wheat from high- and low-risk areas for human esophageal cancer in China.
    Luo Y; Yoshizawa T; Katayama T
    Appl Environ Microbiol; 1990 Dec; 56(12):3723-6. PubMed ID: 2150585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic Fusarium chemotyping as a useful tool for predicting nivalenol contamination in winter wheat.
    Pasquali M; Giraud F; Brochot C; Cocco E; Hoffmann L; Bohn T
    Int J Food Microbiol; 2010 Feb; 137(2-3):246-53. PubMed ID: 20004994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Further survey of the occurrence of Fusarium toxins in wheat grown in southwest Germany.
    Müller HM; Reimann J; Schumacher U; Schwadorf K
    Arch Tierernahr; 2001; 54(2):173-82. PubMed ID: 11851024
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fusarium toxins in wheat harvested during six years in an area of southwest Germany.
    Müller HM; Reimann J; Schumacher U; Schwadorf K
    Nat Toxins; 1997; 5(1):24-30. PubMed ID: 9086456
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TRI12 based quantitative real-time PCR assays reveal the distribution of trichothecene genotypes of F. graminearum and F. culmorum isolates in Danish small grain cereals.
    Nielsen LK; Jensen JD; Rodríguez A; Jørgensen LN; Justesen AF
    Int J Food Microbiol; 2012 Jul; 157(3):384-92. PubMed ID: 22781579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular survey of trichothecene genotypes of Fusarium graminearum species complex from barley in southern Brazil.
    Astolfi P; dos Santos J; Schneider L; Gomes LB; Silva CN; Tessmann DJ; Del Ponte EM
    Int J Food Microbiol; 2011 Aug; 148(3):197-201. PubMed ID: 21665312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fusarium toxins in wheat from an area in Henan Province, PR China, with a previous human red mould intoxication episode.
    Li FQ; Li YW; Luo XY; Yoshizawa T
    Food Addit Contam; 2002 Feb; 19(2):163-7. PubMed ID: 11820498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fusarium graminearum and deoxynivalenol contamination in the durum wheat area of Argentina.
    Lori GA; Sisterna MN; Haidukowski M; Rizzo I
    Microbiol Res; 2003; 158(1):29-35. PubMed ID: 12608577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monitoring of Fusarium trichothecenes in Canadian cereal grain shipments from 2010 to 2012.
    Tittlemier SA; Gaba D; Chan JM
    J Agric Food Chem; 2013 Jul; 61(30):7412-8. PubMed ID: 23844863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of trichothecene mycotoxins by Australian Fusarium species.
    McLachlan A; Shaw KJ; Hocking AD; Pitt JI; Nguyen TH
    Food Addit Contam; 1992; 9(6):631-8. PubMed ID: 1302202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Natural occurrence of Fusarium toxins in oats harvested during five years in an area of southwest Germany.
    Müller HM; Reimann J; Schumacher U; Schwadorf K
    Food Addit Contam; 1998 Oct; 15(7):801-6. PubMed ID: 10211188
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trichothecenes and zearalenone production by Fusarium equiseti and Fusarium semitectum species isolated from Argentinean soybean.
    Barros G; Zanon MS; Palazzini JM; Haidukowski M; Pascale M; Chulze S
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(9):1436-42. PubMed ID: 22830612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of capillary gas chromatography to a survey of wheat for five trichothecenes.
    Scott PM; Lombaert GA; Pellaers P; Bacler S; Kanhere SR; Sun WF; Lau PY; Weber D
    Food Addit Contam; 1989; 6(4):489-500. PubMed ID: 2792468
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring of
    Ji L; Li Q; Wang Y; Burgess LW; Sun M; Cao K; Kong L
    Toxins (Basel); 2019 Apr; 11(5):. PubMed ID: 31035348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.