These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 18266411)

  • 1. Spins as qubits: quantum information processing by nuclear magnetic resonance.
    Suter D; Mahesh TS
    J Chem Phys; 2008 Feb; 128(5):052206. PubMed ID: 18266411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The NMR implementation of quantum algorithm].
    Luo XM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Feb; 23(1):178-81. PubMed ID: 12940002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A scalable quantum computer with ions in an array of microtraps.
    Cirac JI; Zoller P
    Nature; 2000 Apr; 404(6778):579-81. PubMed ID: 10766235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An algorithmic benchmark for quantum information processing.
    Knill E; Laflamme R; Martinez R; Tseng CH
    Nature; 2000 Mar; 404(6776):368-70. PubMed ID: 10746718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mean-field dynamics with stochastic decoherence (MF-SD): a new algorithm for nonadiabatic mixed quantum/classical molecular-dynamics simulations with nuclear-induced decoherence.
    Bedard-Hearn MJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2005 Dec; 123(23):234106. PubMed ID: 16392913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance.
    Baugh J; Moussa O; Ryan CA; Nayak A; Laflamme R
    Nature; 2005 Nov; 438(7067):470-3. PubMed ID: 16306986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum information processing by nuclear magnetic resonance on quadrupolar nuclei.
    Teles J; DeAzevedo ER; Freitas JC; Sarthour RS; Oliveira IS; Bonagamba TJ
    Philos Trans A Math Phys Eng Sci; 2012 Oct; 370(1976):4770-93. PubMed ID: 22946040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled multiple quantum coherences of nuclear spins in a nanometre-scale device.
    Yusa G; Muraki K; Takashina K; Hashimoto K; Hirayama Y
    Nature; 2005 Apr; 434(7036):1001-5. PubMed ID: 15846341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Realization of the Cirac-Zoller controlled-NOT quantum gate.
    Schmidt-Kaler F; Häffner H; Riebe M; Gulde S; Lancaster GP; Deuschle T; Becher C; Roos CF; Eschner J; Blatt R
    Nature; 2003 Mar; 422(6930):408-11. PubMed ID: 12660777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling superconducting qubits via a cavity bus.
    Majer J; Chow JM; Gambetta JM; Koch J; Johnson BR; Schreier JA; Frunzio L; Schuster DI; Houck AA; Wallraff A; Blais A; Devoret MH; Girvin SM; Schoelkopf RJ
    Nature; 2007 Sep; 449(7161):443-7. PubMed ID: 17898763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum information processing by NMR using a 5-qubit system formed by dipolar coupled spins in an oriented molecule.
    Das R; Bhattacharyya R; Kumar A
    J Magn Reson; 2004 Oct; 170(2):310-21. PubMed ID: 15388095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudo-random unitary operators for quantum information processing.
    Emerson J; Weinstein YS; Saraceno M; Lloyd S; Cory DG
    Science; 2003 Dec; 302(5653):2098-100. PubMed ID: 14684815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of quantum algorithms by quantum process tomography using quadrupolar spins in solid-state nuclear magnetic resonance.
    Kampermann H; Veeman WS
    J Chem Phys; 2005 Jun; 122(21):214108. PubMed ID: 15974729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple method for the preparation of pseudopure states in nuclear magnetic resonance quantum information processing.
    Fung BM; Ermakov VL
    J Chem Phys; 2004 Nov; 121(17):8410-4. PubMed ID: 15511162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance.
    Vandersypen LM; Steffen M; Breyta G; Yannoni CS; Sherwood MH; Chuang IL
    Nature; 2001 Dec 20-27; 414(6866):883-7. PubMed ID: 11780055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adiabatic quantum computing with spin qubits hosted by molecules.
    Yamamoto S; Nakazawa S; Sugisaki K; Sato K; Toyota K; Shiomi D; Takui T
    Phys Chem Chem Phys; 2015 Jan; 17(4):2742-9. PubMed ID: 25501117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universal quantum computation with the exchange interaction.
    DiVincenzo DP; Bacon D; Kempe J; Burkard G; Whaley KB
    Nature; 2000 Nov; 408(6810):339-42. PubMed ID: 11099036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR implementation of adiabatic SAT algorithm using strongly modulated pulses.
    Mitra A; Mahesh TS; Kumar A
    J Chem Phys; 2008 Mar; 128(12):124110. PubMed ID: 18376911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental implementation of local adiabatic evolution algorithms by an NMR quantum information processor.
    Mitra A; Ghosh A; Das R; Patel A; Kumar A
    J Magn Reson; 2005 Dec; 177(2):285-98. PubMed ID: 16172009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer.
    Gulde S; Riebe M; Lancaster GP; Becher C; Eschner J; Häffner H; Schmidt-Kaler F; Chuang IL; Blatt R
    Nature; 2003 Jan; 421(6918):48-50. PubMed ID: 12511949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.