These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 18266451)
1. Theoretical study of Sutherland fluids with long-range, short-range, and highly short-range potential parameters. Mi J; Tang Y; Zhong C J Chem Phys; 2008 Feb; 128(5):054503. PubMed ID: 18266451 [TBL] [Abstract][Full Text] [Related]
2. An improved renormalization group theory for real fluids. Mi J; Zhong C; Li YG; Tang Y J Chem Phys; 2004 Sep; 121(11):5372-80. PubMed ID: 15352830 [TBL] [Abstract][Full Text] [Related]
3. Prediction of global vapor-liquid equilibria for mixtures containing polar and associating components with improved renormalization group theory. Mi J; Tang Y; Zhong C; Li YG J Phys Chem B; 2005 Nov; 109(43):20546-53. PubMed ID: 16853659 [TBL] [Abstract][Full Text] [Related]
4. Prediction of phase behavior of nanoconfined Lennard-Jones fluids with density functional theory based on the first-order mean spherical approximation. Mi J; Tang Y; Zhong C; Li YG J Chem Phys; 2006 Apr; 124(14):144709. PubMed ID: 16626233 [TBL] [Abstract][Full Text] [Related]
5. First-order mean-spherical approximation for interfacial phenomena: a unified method from bulk-phase equilibria study. Tang Y J Chem Phys; 2005 Nov; 123(20):204704. PubMed ID: 16351290 [TBL] [Abstract][Full Text] [Related]
6. Density functional theory integrated with renormalization group theory for criticality of nanoconfined fluids. Zeng M; Mi J; Zhong C J Phys Chem B; 2010 Mar; 114(11):3894-901. PubMed ID: 20184293 [TBL] [Abstract][Full Text] [Related]
7. Application of a renormalization-group treatment to the statistical associating fluid theory for potentials of variable range (SAFT-VR). Forte E; Llovell F; Vega LF; Trusler JP; Galindo A J Chem Phys; 2011 Apr; 134(15):154102. PubMed ID: 21513370 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamic and structural properties of mixed colloids represented by a hard-core two-Yukawa mixture model fluid: Monte Carlo simulations and an analytical theory. Yu YX; Jin L J Chem Phys; 2008 Jan; 128(1):014901. PubMed ID: 18190220 [TBL] [Abstract][Full Text] [Related]
9. First-order mean spherical approximation for inhomogeneous fluids. Tang Y J Chem Phys; 2004 Dec; 121(21):10605-10. PubMed ID: 15549943 [TBL] [Abstract][Full Text] [Related]
10. Phase behavior of dipolar fluids from a modified statistical associating fluid theory for potentials of variable range. Zhao H; McCabe C J Chem Phys; 2006 Sep; 125(10):104504. PubMed ID: 16999538 [TBL] [Abstract][Full Text] [Related]
12. First-order mean spherical approximation for attractive, repulsive, and multi-Yukawa potentials. Tang Y; Lin YZ; Li YG J Chem Phys; 2005 May; 122(18):184505. PubMed ID: 15918727 [TBL] [Abstract][Full Text] [Related]
13. A perturbative density functional theory for square-well fluids. Jin Z; Tang Y; Wu J J Chem Phys; 2011 May; 134(17):174702. PubMed ID: 21548701 [TBL] [Abstract][Full Text] [Related]
14. A new scheme for perturbation contribution in density functional theory and application to solvation force and critical fluctuations. Zhou S J Chem Phys; 2009 Oct; 131(13):134702. PubMed ID: 19814565 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamic properties of model solids with short-ranged potentials from Monte Carlo simulations and perturbation theory. Díez A; Largo J; Solana JR J Phys Chem B; 2007 Aug; 111(34):10194-201. PubMed ID: 17683133 [TBL] [Abstract][Full Text] [Related]
16. Core-excitation energy calculations with a long-range corrected hybrid exchange-correlation functional including a short-range Gaussian attenuation (LCgau-BOP). Song JW; Watson MA; Nakata A; Hirao K J Chem Phys; 2008 Nov; 129(18):184113. PubMed ID: 19045392 [TBL] [Abstract][Full Text] [Related]
17. Critical asymmetry in renormalization group theory for fluids. Zhao W; Wu L; Wang L; Li L; Cai J J Chem Phys; 2013 Jun; 138(23):234502. PubMed ID: 23802966 [TBL] [Abstract][Full Text] [Related]
18. Theoretical investigation about the possible consequence of artificial discontinuity in pair potential function on overall phase behavior. Zhou S J Phys Chem B; 2009 Jun; 113(25):8635-45. PubMed ID: 19480419 [TBL] [Abstract][Full Text] [Related]
19. Self-consistent Ornstein-Zernike approximation for the Yukawa fluid with improved direct correlation function. Reiner A; Høye JS J Chem Phys; 2008 Mar; 128(11):114507. PubMed ID: 18361591 [TBL] [Abstract][Full Text] [Related]
20. Direct correlation function for complex square barrier-square well potentials in the first-order mean spherical approximation. Hlushak SP; Trokhymchuk AD; Sokołowski S J Chem Phys; 2011 Mar; 134(11):114101. PubMed ID: 21428601 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]