These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 18266815)
1. Ligand-independent regulation of the hairless promoter by vitamin D receptor. Engelhard A; Bauer RC; Casta A; Djabali K; Christiano AM Photochem Photobiol; 2008; 84(2):515-21. PubMed ID: 18266815 [TBL] [Abstract][Full Text] [Related]
2. Evidence for 1,25-dihydroxyvitamin D3-independent transactivation by the vitamin D receptor: uncoupling the receptor and ligand in keratinocytes. Ellison TI; Eckert RL; MacDonald PN J Biol Chem; 2007 Apr; 282(15):10953-62. PubMed ID: 17310066 [TBL] [Abstract][Full Text] [Related]
3. Ligand-independent actions of the vitamin D receptor maintain hair follicle homeostasis. Skorija K; Cox M; Sisk JM; Dowd DR; MacDonald PN; Thompson CC; Demay MB Mol Endocrinol; 2005 Apr; 19(4):855-62. PubMed ID: 15591533 [TBL] [Abstract][Full Text] [Related]
4. Hairless suppresses vitamin D receptor transactivation in human keratinocytes. Xie Z; Chang S; Oda Y; Bikle DD Endocrinology; 2006 Jan; 147(1):314-23. PubMed ID: 16269453 [TBL] [Abstract][Full Text] [Related]
5. Atrichia caused by mutations in the vitamin D receptor gene is a phenocopy of generalized atrichia caused by mutations in the hairless gene. Miller J; Djabali K; Chen T; Liu Y; Ioffreda M; Lyle S; Christiano AM; Holick M; Cotsarelis G J Invest Dermatol; 2001 Sep; 117(3):612-7. PubMed ID: 11564167 [TBL] [Abstract][Full Text] [Related]
6. Hairless modulates ligand-dependent activation of the vitamin D receptor-retinoid X receptor heterodimer. Chuma M; Endo-Umeda K; Shimba S; Yamada S; Makishima M Biol Pharm Bull; 2012; 35(4):582-7. PubMed ID: 22466564 [TBL] [Abstract][Full Text] [Related]
7. Development and progression of alopecia in the vitamin D receptor null mouse. Bikle DD; Elalieh H; Chang S; Xie Z; Sundberg JP J Cell Physiol; 2006 May; 207(2):340-53. PubMed ID: 16419036 [TBL] [Abstract][Full Text] [Related]
8. Physical and functional interaction between the vitamin D receptor and hairless corepressor, two proteins required for hair cycling. Hsieh JC; Sisk JM; Jurutka PW; Haussler CA; Slater SA; Haussler MR; Thompson CC J Biol Chem; 2003 Oct; 278(40):38665-74. PubMed ID: 12847098 [TBL] [Abstract][Full Text] [Related]
9. Vitamin D receptor-mediated control of Soggy, Wise, and Hairless gene expression in keratinocytes. Hsieh JC; Estess RC; Kaneko I; Whitfield GK; Jurutka PW; Haussler MR J Endocrinol; 2014 Feb; 220(2):165-78. PubMed ID: 24190897 [TBL] [Abstract][Full Text] [Related]
10. Modulation of vitamin d receptor activity by the corepressor hairless: differential effects of hairless isoforms. Malloy PJ; Wang J; Jensen K; Feldman D Endocrinology; 2009 Nov; 150(11):4950-7. PubMed ID: 19819974 [TBL] [Abstract][Full Text] [Related]
11. Thyroid hormone receptor does not heterodimerize with the vitamin D receptor but represses vitamin D receptor-mediated transactivation. Raval-Pandya M; Freedman LP; Li H; Christakos S Mol Endocrinol; 1998 Sep; 12(9):1367-79. PubMed ID: 9731705 [TBL] [Abstract][Full Text] [Related]
12. Interactions of the vitamin D receptor with the corepressor hairless: analysis of hairless mutants in atrichia with papular lesions. Wang J; Malloy PJ; Feldman D J Biol Chem; 2007 Aug; 282(35):25231-9. PubMed ID: 17609203 [TBL] [Abstract][Full Text] [Related]
13. The vitamin D hormone and its nuclear receptor: molecular actions and disease states. Haussler MR; Haussler CA; Jurutka PW; Thompson PD; Hsieh JC; Remus LS; Selznick SH; Whitfield GK J Endocrinol; 1997 Sep; 154 Suppl():S57-73. PubMed ID: 9379138 [TBL] [Abstract][Full Text] [Related]
14. A novel inborn error in the ligand-binding domain of the vitamin D receptor causes hereditary vitamin D-resistant rickets. Malloy PJ; Zhu W; Zhao XY; Pehling GB; Feldman D Mol Genet Metab; 2001 Jun; 73(2):138-48. PubMed ID: 11386849 [TBL] [Abstract][Full Text] [Related]
15. Direct transcriptional regulation of RelB by 1alpha,25-dihydroxyvitamin D3 and its analogs: physiologic and therapeutic implications for dendritic cell function. Dong X; Craig T; Xing N; Bachman LA; Paya CV; Weih F; McKean DJ; Kumar R; Griffin MD J Biol Chem; 2003 Dec; 278(49):49378-85. PubMed ID: 14507914 [TBL] [Abstract][Full Text] [Related]
16. Repression of basal transcription by vitamin D receptor: evidence for interaction of unliganded vitamin D receptor with two receptor interaction domains in RIP13delta1. Dwivedi PP; Muscat GE; Bailey PJ; Omdahl JL; May BK J Mol Endocrinol; 1998 Jun; 20(3):327-35. PubMed ID: 9687155 [TBL] [Abstract][Full Text] [Related]
17. Transcriptional repression of the interleukin-2 gene by vitamin D3: direct inhibition of NFATp/AP-1 complex formation by a nuclear hormone receptor. Alroy I; Towers TL; Freedman LP Mol Cell Biol; 1995 Oct; 15(10):5789-99. PubMed ID: 7565732 [TBL] [Abstract][Full Text] [Related]
18. A two-hit mechanism for vitamin D3-mediated transcriptional repression of the granulocyte-macrophage colony-stimulating factor gene: vitamin D receptor competes for DNA binding with NFAT1 and stabilizes c-Jun. Towers TL; Staeva TP; Freedman LP Mol Cell Biol; 1999 Jun; 19(6):4191-9. PubMed ID: 10330159 [TBL] [Abstract][Full Text] [Related]
19. A unique insertion/substitution in helix H1 of the vitamin D receptor ligand binding domain in a patient with hereditary 1,25-dihydroxyvitamin D-resistant rickets. Malloy PJ; Xu R; Cattani A; Reyes mL; Feldman D J Bone Miner Res; 2004 Jun; 19(6):1018-24. PubMed ID: 15190891 [TBL] [Abstract][Full Text] [Related]
20. The vitamin D receptor functions as a transcription regulator in the absence of 1,25-dihydroxyvitamin D Lee SM; Pike JW J Steroid Biochem Mol Biol; 2016 Nov; 164():265-270. PubMed ID: 26323657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]