These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 18266817)

  • 21. Ectopic expression of cone-specific G-protein-coupled receptor kinase GRK7 in zebrafish rods leads to lower photosensitivity and altered responses.
    Vogalis F; Shiraki T; Kojima D; Wada Y; Nishiwaki Y; Jarvinen JL; Sugiyama J; Kawakami K; Masai I; Kawamura S; Fukada Y; Lamb TD
    J Physiol; 2011 May; 589(Pt 9):2321-48. PubMed ID: 21486791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular mechanism of S-modulin action: binding target and effect of ATP.
    Sato N; Kawamura S
    J Biochem; 1997 Dec; 122(6):1139-45. PubMed ID: 9498557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of calcium-binding sites in S-modulin function.
    Matsuda S; Hisatomi O; Ishino T; Kobayashi Y; Tokunaga F
    J Biol Chem; 1998 Aug; 273(32):20223-7. PubMed ID: 9685370
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recoverin binds exclusively to an amphipathic peptide at the N terminus of rhodopsin kinase, inhibiting rhodopsin phosphorylation without affecting catalytic activity of the kinase.
    Higgins MK; Oprian DD; Schertler GF
    J Biol Chem; 2006 Jul; 281(28):19426-32. PubMed ID: 16675451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Species-specific differences in expression of G-protein-coupled receptor kinase (GRK) 7 and GRK1 in mammalian cone photoreceptor cells: implications for cone cell phototransduction.
    Weiss ER; Ducceschi MH; Horner TJ; Li A; Craft CM; Osawa S
    J Neurosci; 2001 Dec; 21(23):9175-84. PubMed ID: 11717351
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ca2+-dependent conformational changes in the neuronal Ca2+-sensor recoverin probed by the fluorescent dye Alexa647.
    Gensch T; Komolov KE; Senin II; Philippov PP; Koch KW
    Proteins; 2007 Feb; 66(2):492-9. PubMed ID: 17078090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of carboxyl-terminal charges on S-modulin membrane affinity and inhibition of rhodopsin phosphorylation.
    Matsuda S; Hisatomi O; Tokunaga F
    Biochemistry; 1999 Jan; 38(4):1310-5. PubMed ID: 9930992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence that the Rhodopsin Kinase (GRK1) N-Terminus and the Transducin Gα C-Terminus Interact with the Same "Hydrophobic Patch" on Rhodopsin TM5.
    Jones Brunette AM; Sinha A; David L; Farrens DL
    Biochemistry; 2016 Jun; 55(22):3123-35. PubMed ID: 27078130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate-induced changes in the dynamics of rhodopsin kinase (G protein-coupled receptor kinase 1).
    Orban T; Huang CC; Homan KT; Jastrzebska B; Tesmer JJ; Palczewski K
    Biochemistry; 2012 Apr; 51(16):3404-11. PubMed ID: 22480180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. S-modulin.
    Kawamura S; Tachibanaki S
    Adv Exp Med Biol; 2002; 514():61-8. PubMed ID: 12596915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amino acid sequences of two immune-dominant epitopes of recoverin are involved in Ca2+/recoverin-dependent inhibition of phosphorylation of rhodopsin.
    Senin II; Tikhomirova NK; Churumova VA; Grigoriev II; Kolpakova TA; Zinchenko DV; Philippov PP; Zernii EY
    Biochemistry (Mosc); 2011 Mar; 76(3):332-8. PubMed ID: 21568868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1.
    Chen Q; Plasencia M; Li Z; Mukherjee S; Patra D; Chen CL; Klose T; Yao XQ; Kossiakoff AA; Chang L; Andrews PC; Tesmer JJG
    Nature; 2021 Jul; 595(7868):600-605. PubMed ID: 34262173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A surface of the kinase domain critical for the allosteric activation of G protein-coupled receptor kinases.
    Huang CC; Yoshino-Koh K; Tesmer JJG
    J Biol Chem; 2009 Jun; 284(25):17206-17215. PubMed ID: 19364770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformational Selection in a Protein-Protein Interaction Revealed by Dynamic Pathway Analysis.
    Chakrabarti KS; Agafonov RV; Pontiggia F; Otten R; Higgins MK; Schertler GFX; Oprian DD; Kern D
    Cell Rep; 2016 Jan; 14(1):32-42. PubMed ID: 26725117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The cloning of GRK7, a candidate cone opsin kinase, from cone- and rod-dominant mammalian retinas.
    Weiss ER; Raman D; Shirakawa S; Ducceschi MH; Bertram PT; Wong F; Kraft TW; Osawa S
    Mol Vis; 1998 Dec; 4():27. PubMed ID: 9852166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of G-protein-coupled receptor kinase subtypes by calcium sensor proteins.
    Iacovelli L; Sallese M; Mariggiò S; de Blasi A
    FASEB J; 1999 Jan; 13(1):1-8. PubMed ID: 9872924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activation of G protein-coupled receptor kinase 1 involves interactions between its N-terminal region and its kinase domain.
    Huang CC; Orban T; Jastrzebska B; Palczewski K; Tesmer JJ
    Biochemistry; 2011 Mar; 50(11):1940-9. PubMed ID: 21265573
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Background light produces a recoverin-dependent modulation of activated-rhodopsin lifetime in mouse rods.
    Chen CK; Woodruff ML; Chen FS; Chen D; Fain GL
    J Neurosci; 2010 Jan; 30(4):1213-20. PubMed ID: 20107049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. M opsin phosphorylation in intact mammalian retinas.
    Liu P; Osawa S; Weiss ER
    J Neurochem; 2005 Apr; 93(1):135-44. PubMed ID: 15773913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A highly conserved cysteine of neuronal calcium-sensing proteins controls cooperative binding of Ca2+ to recoverin.
    Ranaghan MJ; Kumar RP; Chakrabarti KS; Buosi V; Kern D; Oprian DD
    J Biol Chem; 2013 Dec; 288(50):36160-7. PubMed ID: 24189072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.