These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 18266902)
1. Transcriptome profiling of grapefruit flavedo following exposure to low temperature and conditioning treatments uncovers principal molecular components involved in chilling tolerance and susceptibility. Maul P; McCollum GT; Popp M; Guy CL; Porat R Plant Cell Environ; 2008 Jun; 31(6):752-68. PubMed ID: 18266902 [TBL] [Abstract][Full Text] [Related]
2. Postharvest heat and conditioning treatments activate different molecular responses and reduce chilling injuries in grapefruit. Sapitnitskaya M; Maul P; McCollum GT; Guy CL; Weiss B; Samach A; Porat R J Exp Bot; 2006; 57(12):2943-53. PubMed ID: 16908505 [TBL] [Abstract][Full Text] [Related]
3. Expression analysis in response to low temperature stress in blood oranges: implication of the flavonoid biosynthetic pathway. Crifò T; Puglisi I; Petrone G; Recupero GR; Lo Piero AR Gene; 2011 May; 476(1-2):1-9. PubMed ID: 21349317 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional profiling of sunflower plants growing under low temperatures reveals an extensive down-regulation of gene expression associated with chilling sensitivity. Hewezi T; Léger M; El Kayal W; Gentzbittel L J Exp Bot; 2006; 57(12):3109-22. PubMed ID: 16899522 [TBL] [Abstract][Full Text] [Related]
5. Isolation of a dehydrin cDNA from orange and grapefruit citrus fruit that is specifically induced by the combination of heat followed by chilling temperatures. Porat R; Pasentsis K; Rozentzvieg D; Gerasopoulos D; Falara V; Samach A; Lurie S; Kanellis AK Physiol Plant; 2004 Feb; 120(2):256-264. PubMed ID: 15032860 [TBL] [Abstract][Full Text] [Related]
6. Dehydrin from citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves. Sanchez-Ballesta MT; Rodrigo MJ; Lafuente MT; Granell A; Zacarias L J Agric Food Chem; 2004 Apr; 52(7):1950-7. PubMed ID: 15053535 [TBL] [Abstract][Full Text] [Related]
7. Changes in the transcriptome of 'Mor' mandarin flesh during storage: emphasis on molecular regulation of fruit flavor deterioration. Tietel Z; Feldmesser E; Lewinsohn E; Fallik E; Porat R J Agric Food Chem; 2011 Apr; 59(8):3819-27. PubMed ID: 21401120 [TBL] [Abstract][Full Text] [Related]
8. Expression of three sHSP genes involved in heat pretreatment-induced chilling tolerance in banana fruit. He LH; Chen JY; Kuang JF; Lu WJ J Sci Food Agric; 2012 Jul; 92(9):1924-30. PubMed ID: 22234735 [TBL] [Abstract][Full Text] [Related]
9. Microarray expression profiling of postharvest Ponkan mandarin (Citrus reticulata) fruit under cold storage reveals regulatory gene candidates and implications on soluble sugars metabolism. Zhu A; Li W; Ye J; Sun X; Ding Y; Cheng Y; Deng X J Integr Plant Biol; 2011 May; 53(5):358-74. PubMed ID: 21348940 [TBL] [Abstract][Full Text] [Related]
10. Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice. Matsumoto T; Lian HL; Su WA; Tanaka D; Liu Cw; Iwasaki I; Kitagawa Y Plant Cell Physiol; 2009 Feb; 50(2):216-29. PubMed ID: 19098326 [TBL] [Abstract][Full Text] [Related]
11. D-Serine exposure resulted in gene expression changes implicated in neurodegenerative disorders and neuronal dysfunction in male Fischer 344 rats. Davidson ME; Kerepesi LA; Soto A; Chan VT Arch Toxicol; 2009 Aug; 83(8):747-62. PubMed ID: 19212759 [TBL] [Abstract][Full Text] [Related]
12. Carbohydrate metabolism as related to high-temperature conditioning and peel disorders occurring during storage of citrus fruit. Holland N; Menezes HC; Lafuente MT J Agric Food Chem; 2005 Nov; 53(22):8790-6. PubMed ID: 16248586 [TBL] [Abstract][Full Text] [Related]
13. Expression of genes encoding cell wall modifying enzymes is induced by cold storage and reflects changes in pear fruit texture. Fonseca S; Monteiro L; Barreiro MG; Pais MS J Exp Bot; 2005 Aug; 56(418):2029-36. PubMed ID: 15955791 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional Analysis of C-Repeat Binding Factors in Fruit of Salvo M; Rey F; Arruabarrena A; Gambetta G; Rodrigo MJ; Zacarías L; Lado J Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33467390 [TBL] [Abstract][Full Text] [Related]
15. Molecular mechanisms involved in postharvest chilling tolerance of pomegranate fruit. Kashash Y; Holland D; Porat R J Sci Food Agric; 2019 Oct; 99(13):5617-5623. PubMed ID: 31321784 [TBL] [Abstract][Full Text] [Related]
16. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Zhu J; Dong CH; Zhu JK Curr Opin Plant Biol; 2007 Jun; 10(3):290-5. PubMed ID: 17468037 [TBL] [Abstract][Full Text] [Related]
17. High-temperature conditioning induces chilling tolerance in mandarin fruit: a cell wall approach. Holland N; Nunes FL; de Medeiros IU; Lafuente MT J Sci Food Agric; 2012 Dec; 92(15):3039-45. PubMed ID: 22576747 [TBL] [Abstract][Full Text] [Related]
18. Role of phenylalanine ammonia-lyase in heat pretreatment-induced chilling tolerance in banana fruit. Chen JY; He LH; Jiang YM; Wang Y; Joyce DC; Ji ZL; Lu WJ Physiol Plant; 2008 Mar; 132(3):318-28. PubMed ID: 18275463 [TBL] [Abstract][Full Text] [Related]
20. Analysis of ethylene biosynthesis and perception during postharvest cold storage of Marsh and Star Ruby grapefruits. Lado J; Rodrigo MJ; Zacarías L Food Sci Technol Int; 2015 Oct; 21(7):537-46. PubMed ID: 25280937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]