These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 18266919)
21. Conversion of 5-hydroxytryptophan into serotonin by tryptophan decarboxylase in plants, Escherichia coli, and yeast. Park M; Kang K; Park S; Back K Biosci Biotechnol Biochem; 2008 Sep; 72(9):2456-8. PubMed ID: 18776677 [TBL] [Abstract][Full Text] [Related]
22. In vitro reconstitution of rice anthranilate synthase: distinct functional properties of the alpha subunits OASA1 and OASA2. Kanno T; Kasai K; Ikejiri-Kanno Y; Wakasa K; Tozawa Y Plant Mol Biol; 2004 Jan; 54(1):11-22. PubMed ID: 15159631 [TBL] [Abstract][Full Text] [Related]
23. Pathogenesis-related proteins in somatic hybrid rice induced by bacterial blight. Yu CL; Yan SP; Wang CC; Hu HT; Sun WN; Yan CQ; Chen JP; Yang L Phytochemistry; 2008 Jul; 69(10):1989-96. PubMed ID: 18534637 [TBL] [Abstract][Full Text] [Related]
24. Increased tryptophan decarboxylase and monoamine oxidase activities induce Sekiguchi lesion formation in rice infected with Magnaporthe grisea. Ueno M; Shibata H; Kihara J; Honda Y; Arase S Plant J; 2003 Oct; 36(2):215-28. PubMed ID: 14535886 [TBL] [Abstract][Full Text] [Related]
25. Characterization of rice tryptophan decarboxylases and their direct involvement in serotonin biosynthesis in transgenic rice. Kang S; Kang K; Lee K; Back K Planta; 2007 Dec; 227(1):263-72. PubMed ID: 17763868 [TBL] [Abstract][Full Text] [Related]
26. Loss function of SL (sekiguchi lesion) in the rice cultivar Minghui 86 leads to enhanced resistance to (hemi)biotrophic pathogens. Tian D; Yang F; Niu Y; Lin Y; Chen Z; Li G; Luo Q; Wang F; Wang M BMC Plant Biol; 2020 Nov; 20(1):507. PubMed ID: 33148178 [TBL] [Abstract][Full Text] [Related]
27. Systematic secretome analyses of rice leaf and seed callus suspension-cultured cells: workflow development and establishment of high-density two-dimensional gel reference maps. Jung YH; Jeong SH; Kim SH; Singh R; Lee JE; Cho YS; Agrawal GK; Rakwal R; Jwa NS J Proteome Res; 2008 Dec; 7(12):5187-210. PubMed ID: 18986194 [TBL] [Abstract][Full Text] [Related]
28. Defective active silicon uptake affects some components of rice resistance to brown spot. Dallagnol LJ; Rodrigues FA; Mielli MV; Ma JF; Datnoff LE Phytopathology; 2009 Jan; 99(1):116-21. PubMed ID: 19055443 [TBL] [Abstract][Full Text] [Related]
29. Deficiency in silicon uptake affects cytological, physiological, and biochemical events in the rice--Bipolaris oryzae interaction. Dallagnol LJ; Rodrigues FA; DaMatta FM; Mielli MV; Pereira SC Phytopathology; 2011 Jan; 101(1):92-104. PubMed ID: 20879842 [TBL] [Abstract][Full Text] [Related]
30. Effect of the engineered indole pathway on accumulation of phenolic compounds in Catharanthus roseus hairy roots. Chung IM; Hong SB; Peebles CA; Kim JA; San KY Biotechnol Prog; 2007; 23(2):327-32. PubMed ID: 17256967 [TBL] [Abstract][Full Text] [Related]
31. A MAP kinase gene, BMK1, is required for conidiation and pathogenicity in the rice leaf spot pathogen Bipolaris oryzae. Moriwaki A; Kihara J; Mori C; Arase S Microbiol Res; 2007; 162(2):108-14. PubMed ID: 16546358 [TBL] [Abstract][Full Text] [Related]
32. Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. Cho K; Shibato J; Agrawal GK; Jung YH; Kubo A; Jwa NS; Tamogami S; Satoh K; Kikuchi S; Higashi T; Kimura S; Saji H; Tanaka Y; Iwahashi H; Masuo Y; Rakwal R J Proteome Res; 2008 Jul; 7(7):2980-98. PubMed ID: 18517257 [TBL] [Abstract][Full Text] [Related]
33. Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS. Suzuki Y; Miyamoto T; Yoshizawa R; Mae T; Makino A Plant Cell Environ; 2009 Apr; 32(4):417-27. PubMed ID: 19183297 [TBL] [Abstract][Full Text] [Related]
34. Elevated production of melatonin in transgenic rice seeds expressing rice tryptophan decarboxylase. Byeon Y; Park S; Lee HY; Kim YS; Back K J Pineal Res; 2014 Apr; 56(3):275-82. PubMed ID: 24433490 [TBL] [Abstract][Full Text] [Related]
35. Induced tyramine overproduction in transgenic rice plants expressing a rice tyrosine decarboxylase under the control of methanol-inducible rice tryptophan decarboxylase promoter. Park S; Lee K; Kim YS; Chi YT; Shin JS; Back K Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):205-10. PubMed ID: 21909937 [TBL] [Abstract][Full Text] [Related]
36. Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice. Domingo C; Andrés F; Tharreau D; Iglesias DJ; Talón M Mol Plant Microbe Interact; 2009 Feb; 22(2):201-10. PubMed ID: 19132872 [TBL] [Abstract][Full Text] [Related]
37. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Li D; Wang L; Wang M; Xu YY; Luo W; Liu YJ; Xu ZH; Li J; Chong K Plant Biotechnol J; 2009 Oct; 7(8):791-806. PubMed ID: 19754838 [TBL] [Abstract][Full Text] [Related]
38. Arabidopsis indole synthase, a homolog of tryptophan synthase alpha, is an enzyme involved in the Trp-independent indole-containing metabolite biosynthesis. Zhang R; Wang B; Ouyang J; Li J; Wang Y J Integr Plant Biol; 2008 Sep; 50(9):1070-7. PubMed ID: 18844775 [TBL] [Abstract][Full Text] [Related]
39. Differences in expression of the RBCS multigene family and rubisco protein content in various rice plant tissues at different growth stages. Suzuki Y; Nakabayashi K; Yoshizawa R; Mae T; Makino A Plant Cell Physiol; 2009 Oct; 50(10):1851-5. PubMed ID: 19720627 [TBL] [Abstract][Full Text] [Related]
40. Induction of serotonin biosynthesis is uncoupled from the coordinated induction of tryptophan biosynthesis in pepper fruits (Capsicum annuum) upon pathogen infection. Park S; Kang K; Lee K; Choi D; Kim YS; Back K Planta; 2009 Nov; 230(6):1197-206. PubMed ID: 19760262 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]