These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 182672)

  • 21. Abnormal septation and inhibition of sporulation by accumulation of L- -glycerophosphate in Bacillus subtilis mutants.
    O YK; Freese EB; Freese E
    J Bacteriol; 1973 Feb; 113(2):1034-45. PubMed ID: 4632310
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of the gene encoding glycerol-3-phosphate dehydrogenase (glpD) in Bacillus subtilis is controlled by antitermination.
    Holmberg C; Rutberg B
    Mol Microbiol; 1991 Dec; 5(12):2891-900. PubMed ID: 1809833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutants of Escherichia coli defective in membrane phospholipid synthesis. Phenotypic suppression of sn-glycerol-3-phosphate acyltransferase Km mutants by loss of feedback inhibition of the biosynthetic sn-glycerol-3-phosphate dehydrogenase.
    Bell RM; Cronan JE
    J Biol Chem; 1975 Sep; 250(18):7153-8. PubMed ID: 240817
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic and enzymatic characterization of the inducible glycerol dissimilatory system of Neurospora crassa.
    Denor PF; Courtright JB
    J Bacteriol; 1982 Aug; 151(2):912-7. PubMed ID: 6284716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae.
    Larsson C; PĂ„hlman IL; Ansell R; Rigoulet M; Adler L; Gustafsson L
    Yeast; 1998 Mar; 14(4):347-57. PubMed ID: 9559543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A second transport system for sn-glycerol-3-phosphate in Escherichia coli.
    Argast M; Ludtke D; Silhavy TJ; Boos W
    J Bacteriol; 1978 Dec; 136(3):1070-83. PubMed ID: 363686
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GlcA-mediated glycerol-3-phosphate synthesis contributes to the oxidation resistance of Aspergillus fumigatus via decreasing the cellular ROS.
    Zhang C; Gu H; Ren Y; Lu L
    Fungal Genet Biol; 2021 Apr; 149():103531. PubMed ID: 33581364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of Escherichia coli operon-fusion strains for the study of glycerol 3-phosphate transport activity.
    Miki K; Lin EC
    J Bacteriol; 1980 Sep; 143(3):1436-43. PubMed ID: 6773929
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glycerol catabolic enzymes and their regulation in wild-type and mutant strains of Streptomyces coelicolor A3(2).
    Seno ET; Chater KF
    J Gen Microbiol; 1983 May; 129(5):1403-13. PubMed ID: 6619799
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adenosine 5'-triphosphate release and membrane collapse in glycerol-requiring mutants of Bacillus subtilis.
    Freese EB; Oh YK
    J Bacteriol; 1974 Oct; 120(1):507-15. PubMed ID: 4371436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Periplasmic protein related to the sn-glycerol-3-phosphate transport system of Escherichia coli.
    Silhavy TJ; Hartig-Beecken I; Boos W
    J Bacteriol; 1976 May; 126(2):951-8. PubMed ID: 770459
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Positively regulated glycerol/G3P-dependent Bacillus subtilis gene expression system based on anti-termination.
    Lewin A; Su XD; Hederstedt L
    J Mol Microbiol Biotechnol; 2009; 17(2):61-70. PubMed ID: 18946204
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Bacillus subtilis glpD leader and antiterminator protein GlpP provide a target for glucose repression in Escherichia coli.
    Glatz E; Farewell A; Rutberg B
    FEMS Microbiol Lett; 1998 May; 162(1):93-6. PubMed ID: 9595668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The glpP and glpF genes of the glycerol regulon in Bacillus subtilis.
    Beijer L; Nilsson RP; Holmberg C; Rutberg L
    J Gen Microbiol; 1993 Feb; 139(2):349-59. PubMed ID: 8436953
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glycerol dissimilation and its regulation in bacteria.
    Lin EC
    Annu Rev Microbiol; 1976; 30():535-78. PubMed ID: 825019
    [No Abstract]   [Full Text] [Related]  

  • 36. Structure and functions of linkage unit intermediates in the biosynthesis of ribitol teichoic acids in Staphylococcus aureus H and Bacillus subtilis W23.
    Yokoyama K; Miyashita T; Araki Y; Ito E
    Eur J Biochem; 1986 Dec; 161(2):479-89. PubMed ID: 3096735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characteristics of a binding protein-dependent transport system for sn-glycerol-3-phosphate in Escherichia coli that is part of the pho regulon.
    Schweizer H; Argast M; Boos W
    J Bacteriol; 1982 Jun; 150(3):1154-63. PubMed ID: 7042685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants.
    Chanda B; Xia Y; Mandal MK; Yu K; Sekine KT; Gao QM; Selote D; Hu Y; Stromberg A; Navarre D; Kachroo A; Kachroo P
    Nat Genet; 2011 May; 43(5):421-7. PubMed ID: 21441932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anaerobic L- -glycerophosphate dehydrogenase of Escherichia coli: its genetic locus and its physiological role.
    Kistler WS; Lin EC
    J Bacteriol; 1971 Dec; 108(3):1224-34. PubMed ID: 4945192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic analysis by in vivo 31P nuclear magnetic resonance of internal Pi during the uptake of sn-glycerol-3-phosphate by the pho regulon-dependent Ugp system and the glp regulon-dependent GlpT system.
    Xavier KB; Kossmann M; Santos H; Boos W
    J Bacteriol; 1995 Feb; 177(3):699-704. PubMed ID: 7836304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.