BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 18267327)

  • 1. Fugacity modelling to predict the distribution of organic contaminants in the soil:oil matrix of constructed biopiles.
    Pollard SJ; Hough RL; Kim KH; Bellarby J; Paton G; Semple KT; Coulon F
    Chemosphere; 2008 Apr; 71(8):1432-9. PubMed ID: 18267327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimedia fate of petroleum hydrocarbons in the soil: oil matrix of constructed biopiles.
    Coulon F; Whelan MJ; Paton GI; Semple KT; Villa R; Pollard SJ
    Chemosphere; 2010 Dec; 81(11):1454-62. PubMed ID: 20851453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass transfer of polyaromatic hydrocarbons (PAHs) in a two-liquid-phase system.
    Lee JY; Cho HJ; Baek K; Yang JW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(3):509-19. PubMed ID: 15756963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of temperature and origin of dissolved organic matter on the partitioning behavior of polycyclic aromatic hydrocarbons.
    Haftka JJ; Govers HA; Parsons JR
    Environ Sci Pollut Res Int; 2010 Jun; 17(5):1070-9. PubMed ID: 19953335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of microbial accessibility of carbon-14-phenanthrene in soil in the presence of pyrene or benzo[a]pyrene using an aqueous cyclodextrin extraction technique.
    Papadopoulos A; Reid BJ; Semple KT
    J Environ Qual; 2007; 36(5):1385-91. PubMed ID: 17785278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of multi-media transport and transformation models: regional fugacity model vs. CalTOX.
    Maddalena RL; McKone TE; Layton DW; Hsieh DP
    Chemosphere; 1995 Mar; 30(5):869-89. PubMed ID: 7712137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioavailability of benzo[a]pyrene during NAPL-enhanced biodegradation in soil and in liquid culture.
    Kanaly RA; Watanabe K; Matsui S
    Water Sci Technol; 2006; 53(11):17-25. PubMed ID: 16862770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soils impacted by PAHs: Would the stabilized organic matter be a green tool for the immobilization of these noxious compounds?
    Dores-Silva PR; Cotta JAO; Landgraf MD; Rezende MOO
    J Environ Sci Health B; 2018 May; 53(5):313-318. PubMed ID: 29431582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of nitrogen-polycyclic aromatic hydrocarbons on phenanthrene and benzo[a]pyrene mineralisation in soil.
    Anyanwu IN; Ikpikpini OC; Semple KT
    Ecotoxicol Environ Saf; 2018 Jan; 147():594-601. PubMed ID: 28923724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effects of dissolved organic matter on phenanthrene adsorption by soil].
    Xiong W; Ling WT; Gao YZ; Li QL; Dai JY
    Ying Yong Sheng Tai Xue Bao; 2007 Feb; 18(2):431-5. PubMed ID: 17450752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of polycyclic aromatic hydrocarbons in thirty typical soil profiles in the Yangtze River Delta region, east China.
    Ping LF; Luo YM; Zhang HB; Li QB; Wu LH
    Environ Pollut; 2007 May; 147(2):358-65. PubMed ID: 16815614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Vertical distribution of polycyclic aromatic hydrocarbons in abandoned vehicles dismantling area soil].
    Wu YY; Hu XY; Hong HJ; Peng XC
    Huan Jing Ke Xue; 2013 Oct; 34(10):4031-5. PubMed ID: 24364327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in soils from typical oil-sewage irrigation area, Northeast China.
    Li X; Li P; Lin X; Gong Z; Fan S; Zheng L; Verkhozina EA
    Environ Monit Assess; 2008 Aug; 143(1-3):257-65. PubMed ID: 17885816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of dissolved organic carbon on desorption of aged phenanthrene from contaminated soils: A mechanistic study.
    Luo L; Chen Z; Cheng Y; Lv J; Cao D; Wen B
    Environ Pollut; 2019 Nov; 254(Pt A):113016. PubMed ID: 31400666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of soil microbiome with crude oil contamination drives detection of hydrocarbon degrading genes which are independent to quantity and type of contaminants.
    Das N; Bhuyan B; Pandey P
    Environ Res; 2022 Dec; 215(Pt 1):114185. PubMed ID: 36049506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examining Screening-Level Multimedia Models Through a Comparison Framework for Landfill Management.
    Asif Z; Chen Z
    Environ Manage; 2016 Jan; 57(1):229-36. PubMed ID: 26342953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of adding bulking agent, inorganic nutrient and microbial inocula on biopile treatment for oil-field drilling waste.
    Ma J; Yang Y; Dai X; Chen Y; Deng H; Zhou H; Guo S; Yan G
    Chemosphere; 2016 May; 150():17-23. PubMed ID: 26891352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions.
    Whelan MJ; Coulon F; Hince G; Rayner J; McWatters R; Spedding T; Snape I
    Chemosphere; 2015 Jul; 131():232-40. PubMed ID: 25563162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation for phenanthrene and pyrene contaminated soils.
    Gao YZ; Zhu LZ
    J Environ Sci (China); 2005; 17(1):14-8. PubMed ID: 15900750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption of polar and nonpolar organic contaminants by oil-contaminated soil.
    Chen H; Chen S; Quan X; Zhao H; Zhang Y
    Chemosphere; 2008 Dec; 73(11):1832-7. PubMed ID: 18799183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.