These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 18267555)

  • 1. Modeling 1-3 composite piezoelectrics: thickness-mode oscillations.
    Smith WA; Auld BA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(1):40-7. PubMed ID: 18267555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling 1-3 composite piezoelectrics: hydrostatic response.
    Smith WA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(1):41-9. PubMed ID: 18263155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications.
    Chan HW; Unsworth J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(4):434-41. PubMed ID: 18285003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Researching on resonance characteristics influenced by the structure parameters of 1-3-2 piezocomposites plate.
    Li L; Qin L; Wang LK; Wan YY; Sun BS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 May; 55(5):946-51. PubMed ID: 18519193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfabricated 1-3 composite acoustic matching layers for 15 MHz transducers.
    Manh T; Jensen GU; Johansen TF; Hoff L
    Ultrasonics; 2013 Aug; 53(6):1141-9. PubMed ID: 23522684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental analysis of 1-3 piezocomposites for high-intensity focused ultrasound transducer applications.
    Chen GS; Liu HC; Lin YC; Lin YL
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):128-34. PubMed ID: 23193224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interdigital pair bonding for high frequency (20-50 MHz) ultrasonic composite transducers.
    Liu R; Harasiewicz KA; Foster FS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jan; 48(1):299-306. PubMed ID: 11367799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of a 1-3-2 type piezoelectric composite.
    Li G; Wang LK; Luan GD; Zhang JD; Li SX
    Ultrasonics; 2006 Dec; 44 Suppl 1():e639-42. PubMed ID: 16820182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From micro to nano: properties and potential applications of micro- and nano-filled polymer ceramic composites in microsystem technology.
    Hanemann T; Boehm J; Henzi P; Honnef K; Litfin K; Ritzhaupt-Kleissl E; Hausselt J
    IEE Proc Nanobiotechnol; 2004 Aug; 151(4):167-72. PubMed ID: 16475863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of micromachined silicon-polymer 2-2 composite matching layers for 15MHz ultrasound transducers.
    Manh T; Jensen GU; Johansen TF; Hoff L
    Ultrasonics; 2014 Apr; 54(4):1088-96. PubMed ID: 24495997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1-3 connectivity piezoelectric ceramic-polymer composite transducers made with viscous polymer processing for high frequency ultrasound.
    Abrar A; Zhang D; Su B; Button TW; Kirk KJ; Cochran S
    Ultrasonics; 2004 Apr; 42(1-9):479-84. PubMed ID: 15047332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling (2-2) piezocomposites partially sliced in the polymer phase.
    Sanchez S; Montero de Espinosa FR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):287-96. PubMed ID: 18244126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of functionally graded piezoelectric ultrasonic transducers.
    Rubio WM; Buiochi F; Adamowski JC; Silva EC
    Ultrasonics; 2009 May; 49(4-5):484-94. PubMed ID: 19230947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ceramic piezocomposites: modeling, technology, and characterization.
    Rybyanets AN; Rybyanets AA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Sep; 58(9):1757-73. PubMed ID: 21937307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A history of medical and biological imaging with polyvinylidene fluoride (PVDF) transducers.
    Foster FS; Harasiewicz KA; Sherar MD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1363-71. PubMed ID: 18238682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective electroelastic moduli of 3-3(0-3) piezocomposites.
    Levassort F; Lethiecq M; Desmare R; Hue TH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):1028-34. PubMed ID: 18238508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1-3 piezoelectric composite transducers for swept-frequency calibration of hydrophones from 100 kHz to 2 MHz.
    Harris GR; Gammell PM
    J Acoust Soc Am; 2004 Jun; 115(6):2914-8. PubMed ID: 15237815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single crystal PZN/PT-polymer composites for ultrasound transducer applications.
    Ritter T; Geng X; Kirk Shung K; Lopath PD; Park SE; Shrout TR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(4):792-800. PubMed ID: 18238611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the frequency and physical nature of the lowest order parasitic mode in single crystal and ceramic 2-2 and 1-3 piezoelectric composite transducers.
    Robertson D; Hayward G; Gachagan A; Murray V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Aug; 53(8):1503-12. PubMed ID: 16921903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, fabrication, and properties of 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution.
    Dongyu X; Xin C; Banerjee S; Shifeng H
    J Appl Phys; 2014 Dec; 116(24):244103. PubMed ID: 25565725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.