These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 18267577)

  • 21. Theoretical basis for controlling minimal tumor temperature during interstitial conductive heat therapy.
    Babbs CF; Fearnot NE; Marchosky JA; Moran CJ; Jones JT; Plantenga TD
    IEEE Trans Biomed Eng; 1990 Jul; 37(7):662-72. PubMed ID: 2394454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Field conjugate acoustic lenses for ultrasound hyperthermia.
    Lalonde RJ; Worthington A; Hunt JW
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):592-602. PubMed ID: 18263224
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Focused ultrasound facilitated thermo-chemotherapy for targeted retinoblastoma treatment: a modeling study.
    Wang S; Mahesh SP; Liu J; Geist C; Zderic V
    Exp Eye Res; 2012 Jul; 100():17-25. PubMed ID: 22564972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Feasibility of ultrasound hyperthermia with waveguide interstitial applicator.
    Jarosz BJ
    IEEE Trans Biomed Eng; 1996 Nov; 43(11):1106-15. PubMed ID: 9214828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct computation of ultrasound phased-array driving signals from a specified temperature distribution for hyperthermia.
    McGough RJ; Ebbini ES; Cain CA
    IEEE Trans Biomed Eng; 1992 Aug; 39(8):825-35. PubMed ID: 1505996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of thermal therapies with moving power deposition field.
    Arora D; Minor MA; Skliar M; Roemer RB
    Phys Med Biol; 2006 Mar; 51(5):1201-19. PubMed ID: 16481688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A 3-D finite-element model for computation of temperature profiles and regions of thermal damage during focused ultrasound surgery exposures.
    Meaney PM; Clarke RL; ter Haar GR; Rivens IH
    Ultrasound Med Biol; 1998 Nov; 24(9):1489-99. PubMed ID: 10385970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The sector-vortex phased array: acoustic field synthesis for hyperthermia.
    Umemura S; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(2):249-57. PubMed ID: 18284975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NxN square-element ultrasound phased-array applicator: simulated temperature distributions associated with directly synthesized heating patterns.
    Ibbini MS; Ebbini ES; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(6):491-500. PubMed ID: 18285069
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple-focus ultrasound phased-array pattern synthesis: optimal driving-signal distributions for hyperthermia.
    Ebbini ES; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(5):540-8. PubMed ID: 18290231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The concentric-ring array for ultrasound hyperthermia: combined mechanical and electrical scanning.
    Ibbini MS; Cain CA
    Int J Hyperthermia; 1990; 6(2):401-19. PubMed ID: 2324578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relationship between acoustic aperture size and tumor conditions for external ultrasound hyperthermia.
    Lin WL; Yen JY; Chen YY; Jin KW; Shieh MJ
    Med Phys; 1999 May; 26(5):818-24. PubMed ID: 10360547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic focusing in ultrasound hyperthermia treatments using implantable hydrophone arrays.
    Seip R; Vanbaren P; Ebbini ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(5):706-13. PubMed ID: 18263259
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and evaluation of a feedback based phased array system for ultrasound surgery.
    Daum DR; Buchanan MT; Fjield T; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):431-8. PubMed ID: 18244194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A waveform diversity method for optimizing 3-d power depositions generated by ultrasound phased arrays.
    Zeng XJ; Li J; McGough RJ
    IEEE Trans Biomed Eng; 2010 Jan; 57(1):41-7. PubMed ID: 19709949
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A study of various parameters of spherically curved phased arrays for noninvasive ultrasound surgery.
    Fan X; Hynynen K
    Phys Med Biol; 1996 Apr; 41(4):591-608. PubMed ID: 8730659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrasonic phased arrays with variable geometric focusing for hyperthermia applications.
    Yoon YJ; Benkeser PJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(2):273-8. PubMed ID: 18263147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasound phased arrays for prostate treatment.
    Tan JS; Frizzell LA; Sanghvi N; Wu SJ; Seip R; Kouzmanoff JT
    J Acoust Soc Am; 2001 Jun; 109(6):3055-64. PubMed ID: 11425148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental evaluation of a prototype cylindrical section ultrasound hyperthermia phased-array applicator.
    Ebbini ES; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(5):510-20. PubMed ID: 18267615
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The concentric-ring phased-array hyperthermia applicator: problems associated with directly synthesized annular heating patterns.
    Ibbini MS; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(5):574-7. PubMed ID: 18290236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.