These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 18267650)

  • 1. Cooled, ultrahigh Q, sapphire dielectric resonators for low-noise, microwave signal generation.
    Driscoll MM; Haynes JT; Jelen RA; Weinert RW; Gavaler JR; Talvacchio J; Wagner GR; Zaki KA; Liang XP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(3):405-11. PubMed ID: 18267650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave oscillators incorporating high performance distributed Bragg reflector microwave resonators.
    Flory CA; Ko HL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):824-9. PubMed ID: 18244234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement and analysis of a microwave oscillator stabilized by a sapphire dielectric ring resonator for ultra-low noise.
    Dick GJ; Saunders J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):339-46. PubMed ID: 18285050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Q sapphire-rutile frequency-temperature compensated microwave dielectric resonators.
    Tobar ME; Krupka J; Hartnett JG; Ivanov EN; Woode RA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):830-6. PubMed ID: 18244235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimum design of a high-Q room- temperature whispering-gallery-mode X-band sapphire resonator.
    Hartnett JG; Tobar ME; Ivanov EN; Luiten AN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jun; 60(6):1041-7. PubMed ID: 25004468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of two stacked cylindrical dielectric resonators in a TE₁₀₂ microwave cavity for magnetic resonance spectroscopy.
    Mattar SM; Elnaggar SY
    J Magn Reson; 2011 Apr; 209(2):174-82. PubMed ID: 21300559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High performance distributed Bragg reflector microwave resonator.
    Flory CA; Taber RC
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):486-95. PubMed ID: 18244146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Q-factor distributed bragg reflector resonators with reflectors of arbitrary thickness.
    Le Floch JM; Tobar ME; Cros D; Krupka J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2689-95. PubMed ID: 18276575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General expressions for the coupling coefficient, quality and filling factors for a cavity with an insert using energy coupled mode theory.
    Elnaggar SY; Tervo R; Mattar SM
    J Magn Reson; 2014 May; 242():57-66. PubMed ID: 24607823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation.
    Reijerse E; Lendzian F; Isaacson R; Lubitz W
    J Magn Reson; 2012 Jan; 214(1):237-43. PubMed ID: 22196894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity and optimization of a high-Q sapphire dielectric motion-sensing transducer.
    Cuthbertson BD; Tobar ME; Ivanov EN; Blair DG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1303-13. PubMed ID: 18244293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noise control in enclosures: modeling and experiments with T-shaped acoustic resonators.
    Li D; Cheng L; Yu GH; Vipperman JS
    J Acoust Soc Am; 2007 Nov; 122(5):2615-25. PubMed ID: 18189553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low phase-noise sapphire crystal microwave oscillators: current status.
    Ivanov EN; Tobar ME
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):263-9. PubMed ID: 19251513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory.
    Elnaggar SY; Tervo R; Mattar SM
    J Magn Reson; 2014 Jan; 238():1-7. PubMed ID: 24246950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New ceramic EPR resonators with high dielectric permittivity.
    Golovina I; Geifman I; Belous A
    J Magn Reson; 2008 Nov; 195(1):52-9. PubMed ID: 18815061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric microwave resonators in TE(011) cavities for electron paramagnetic resonance spectroscopy.
    Mett RR; Sidabras JW; Golovina IS; Hyde JS
    Rev Sci Instrum; 2008 Sep; 79(9):094702. PubMed ID: 19044441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Q whispering gallery traveling wave resonators for oscillator frequency stabilization.
    Tobar ME; Ivanov EN; Blondy P; Cros D; Guillon P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):421-6. PubMed ID: 18238559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High spectral purity microwave oscillator: design using conventional air-dielectric cavity.
    Gupta AS; Howe DA; Nelson C; Hati A; Walls FL; Nava JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Oct; 51(10):1225-31. PubMed ID: 15553505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical scattering noise in high Q fiber ring resonators and its effect on optoelectronic oscillator phase noise.
    Saleh K; Merrer PH; Llopis O; Cibiel G
    Opt Lett; 2012 Feb; 37(4):518-20. PubMed ID: 22344092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-temperature superconducting resonators.
    Taber RC; Hollenhorst JN; Cutler LS; Bagwell TL; Newman N; Cole BF
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(3):398-404. PubMed ID: 18267649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.