These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18267659)

  • 1. Numerical implementation and model predictions of a unified conservation law description of the electromagnetic acoustic transduction process.
    Ludwig R
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(4):481-8. PubMed ID: 18267659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of electromagnetic acoustic transducers using distributed point source method.
    Eskandarzade M; Kundu T; Liebeaux N; Placko D; Mobadersani F
    Ultrasonics; 2010 May; 50(6):583-91. PubMed ID: 20071000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical basis for a unified conservation law description of the electromagnetic acoustic transduction process.
    Ludwig R
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(4):476-80. PubMed ID: 18267658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical and experimental analysis of unidirectional meander-line coil electromagnetic acoustic transducers.
    Wang S; Su R; Chen X; Kang L; Zhai G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Dec; 60(12):2657-64. PubMed ID: 24297030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a mode-tuning magnetic-concentrator-type electromagnetic acoustic transducer.
    Liu Z; Deng L; Zhang Y; Li A; Wu B; He C
    Ultrasonics; 2020 Apr; 103():106094. PubMed ID: 32045748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directivity analysis of meander-line-coil EMATs with a wholly analytical method.
    Xie Y; Liu Z; Yin L; Wu J; Deng P; Yin W
    Ultrasonics; 2017 Jan; 73():262-270. PubMed ID: 27723531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lift-off compensation for improved accuracy in ultrasonic lamb wave velocity measurements using electromagnetic acoustic transducers (EMATs).
    Morrison JP; Dixon S; Potter MD; Jian X
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1401-4. PubMed ID: 16828139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An omnidirectional shear-horizontal guided wave EMAT for a metallic plate.
    Seung HM; Park CI; Kim YY
    Ultrasonics; 2016 Jul; 69():58-66. PubMed ID: 27058629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental verification of nondiffracting X waves.
    Lu JY; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(3):441-6. PubMed ID: 18267654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of EMAT coil geometry on the Rayleigh wave frequency behaviour.
    Thring CB; Hill SJ; Dixon S; Edwards RS
    Ultrasonics; 2019 Nov; 99():105945. PubMed ID: 31279961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative modeling of the transduction of electromagnetic acoustic transducers operating on ferromagnetic media.
    Ribichini R; Cegla F; Nagy PB; Cawley P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2808-17. PubMed ID: 21156376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microscale capillary wave turbulence excited by high frequency vibration.
    Blamey J; Yeo LY; Friend JR
    Langmuir; 2013 Mar; 29(11):3835-45. PubMed ID: 23428156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation.
    Bou Matar O; Guerder PY; Li Y; Vandewoestyne B; Van Den Abeele K
    J Acoust Soc Am; 2012 May; 131(5):3650-63. PubMed ID: 22559342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of aperture angles and design focal depths on the performance of point-focusing shear vertical wave electromagnetic acoustic transducers.
    Jia XJ; Ouyang Q
    J Acoust Soc Am; 2018 May; 143(5):2892. PubMed ID: 29857723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-D numerical modeling for axisymmetrical piezoelectric structures: application to high-frequency ultrasonic transducers.
    Filoux E; Callé S; Lou-Moeller R; Lethiecq M; Levassort F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1188-99. PubMed ID: 20442031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nondiffracting X waves-exact solutions to free-space scalar wave equation and their finite aperture realizations.
    Lu JY; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(1):19-31. PubMed ID: 18263114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wave-based finite element analysis for acoustic transmission in fluid-filled elastic waveguides.
    Peplow AT
    J Acoust Soc Am; 2009 Apr; 125(4):2053-63. PubMed ID: 19354381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of analytical and numerical transient force excitations on an elastic half-space.
    Ludwig R; Moore D; Lord W
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(3):342-50. PubMed ID: 18284989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutual conversion of bulk and surface acoustic waves in gratings of finite length on half-infinite substrates. I. FE analysis of surface wave generation.
    Darinskii AN; Weihnacht M; Schmidt H
    Ultrasonics; 2013 Jul; 53(5):998-1003. PubMed ID: 23410980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.