These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 18267673)

  • 1. Analysis of order-statistic CFAR threshold estimators for improved ultrasonic flaw detection.
    Saniie J; Nagle DT
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(5):618-30. PubMed ID: 18267673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of order statistic filters applied to ultrasonic flaw detection using split-spectrum processing.
    Saniie J; Nagle DT; Donohue KD
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(2):133-40. PubMed ID: 18267567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flaw Detection in Highly Scattering Materials Using a Simple Ultrasonic Sensor Employing Adaptive Template Matching.
    Wu B; Huang Y
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic flaw detection using radial basis function networks (RBFNs).
    Gil Pita R; Vicen R; Rosa M; Jarabo MP; Vera P; Curpian J
    Ultrasonics; 2004 Apr; 42(1-9):361-5. PubMed ID: 15047312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral histogram using the minimization algorithm-theory and applications to flaw detection.
    Li X; Bilgutay NM; Murthy R
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(2):279-84. PubMed ID: 18263148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speckle reduction by energy time-frequency filtering.
    Izquierdo MA; Hernández MG; Anaya JJ; Martinez O
    Ultrasonics; 2004 Apr; 42(1-9):843-6. PubMed ID: 15047394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximum likelihood estimation of A-scan amplitudes for coherent targets in media of unresolvable scatterers.
    Donohue KD
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(3):422-31. PubMed ID: 18267652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic Flaw Echo Enhancement Based on Empirical Mode Decomposition.
    Feng W; Zhou X; Zeng X; Yang C
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting small flaws near the interface in pulse-echo.
    Fritsch C; Veca A
    Ultrasonics; 2004 Apr; 42(1-9):797-801. PubMed ID: 15047386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal denoising and ultrasonic flaw detection via overcomplete and sparse representations.
    Zhang GM; Harvey DM; Braden DR
    J Acoust Soc Am; 2008 Nov; 124(5):2963-72. PubMed ID: 19045784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EMAT noise suppression using information fusion in stationary wavelet packets.
    Kubinyi M; Kreibich O; Neuzil J; Smid R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1027-36. PubMed ID: 21622058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic Censoring CFAR Detector Based on Ordered Data Difference for Low-Flying Helicopter Safety.
    Jiang W; Huang Y; Yang J
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27399714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic flaw detection in NDE of highly scattering materials using wavelet and Wigner-Ville transform processing.
    Rodríguez MA; San Emeterio JL; Lázaro JC; Ramos A
    Ultrasonics; 2004 Apr; 42(1-9):847-51. PubMed ID: 15047395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal detection and noise suppression using a wavelet transform signal processor: application to ultrasonic flaw detection.
    Abbate A; Koay J; Frankel J; Schroeder SC; Das P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(1):14-26. PubMed ID: 18244097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Correlation-Based Joint CFAR Detector Using Adaptively-Truncated Statistics in SAR Imagery.
    Ai J; Yang X; Zhou F; Dong Z; Jia L; Yan H
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28346395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Waveguide invariant broadband target detection and reverberation estimation.
    Goldhahn R; Hickman G; Krolik J
    J Acoust Soc Am; 2008 Nov; 124(5):2841-51. PubMed ID: 19045772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target Tracking While Jamming by Airborne Radar for Low Probability of Detection.
    Wang F; Cong XB; Shi CG; Sellathurai M
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30200494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modified Anderson-Darling test-based target detector in non-homogenous environments.
    Li Y; Wei Y; Li B; Alterovitz G
    Sensors (Basel); 2014 Aug; 14(9):16046-61. PubMed ID: 25177800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Thresholding Method for IR-UWB Radar-Based Detection Applications.
    Quan X; Choi JW; Cho SH
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32325654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Control for the Detection Threshold of CFAR Process in Cluttered Environments.
    Shin JH; Choi Y
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32668801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.