These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 18267674)

  • 1. Injection locking techniques for a 1-GHz digital receiver using acoustic-wave devices.
    Edmonson PJ; Smith PM; Campbell CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(5):631-7. PubMed ID: 18267674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase-noise reduction in surface wave oscillators by using nonlinear sustaining amplifiers.
    Avramov ID
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Apr; 53(4):707-15. PubMed ID: 16615574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A surface transverse wave-based MSK system.
    Avramov ID; Edmonson PJ; Smith PM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(3):194-8. PubMed ID: 18267575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gigahertz range resonant devices for oscillator applications using shear horizontal acoustic waves.
    Avramov ID
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):459-68. PubMed ID: 18263207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel real-time homodyne coherent receiver using a feed-forward based carrier extraction scheme for phase modulated signals.
    Ibrahim SK; Sygletos S; Weerasuriya R; Ellis AD
    Opt Express; 2011 Apr; 19(9):8320-6. PubMed ID: 21643083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extremely low-phase-noise SAW resonators and oscillators: design and performance.
    Montress GK; Parker TE; Loboda MJ; Greer JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(6):657-67. PubMed ID: 18290201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock.
    Daugey T; Friedt JM; Martin G; Boudot R
    Rev Sci Instrum; 2015 Nov; 86(11):114703. PubMed ID: 26628155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extremely low phase noise UHF oscillators utilizing high-overtone, bulk-acoustic resonators.
    Driscoll MM; Jelen RA; Matthews N
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(6):774-9. PubMed ID: 18267694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low phase-noise sapphire crystal microwave oscillators: current status.
    Ivanov EN; Tobar ME
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):263-9. PubMed ID: 19251513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SAW resonator design and fabrication for 2.0, 2.6 and 3.3 GHz.
    Pendergrass LL; Studebaker LG
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):372-9. PubMed ID: 18290162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave bulk-acoustic-wave reflection-grating resonators.
    Oates DE; Pan JY
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):315-22. PubMed ID: 18290157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A solid-mounted resonator-oscillator-based 4.596 GHz frequency synthesis.
    Boudot R; Li MD; Giordano V; Rolland N; Rolland PA; Vincent P
    Rev Sci Instrum; 2011 Mar; 82(3):034706. PubMed ID: 21456775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1.5-GHz voltage controlled oscillator with 3% tuning bandwidth using a two-pole DSBAR filter.
    Avramov I; Gilbert SR; Ruby R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):916-23. PubMed ID: 21622047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low voltage surface transverse wave oscillators for the next generation CMOS technology.
    Avramov ID
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Aug; 52(8):1247-52. PubMed ID: 16245594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase noise performance of microwave analog frequency dividers: application to the characterization of oscillators up to the millimeter-wave range.
    Llopis O; Regis M; Desgrez S; Graffeuil J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):935-40. PubMed ID: 18238498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HBAR-based 3.6 GHz oscillator with low power consumption and low phase noise.
    Yu H; Lee CY; Pang W; Zhang H; Brannon A; Kitching J; Kim ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):400-3. PubMed ID: 19251528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.
    Zuo C; Van der Spiegel J; Piazza G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):82-7. PubMed ID: 20040430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A digitally compensated 1.5 GHz CMOS/FBAR frequency reference.
    Rai S; Su Y; Pang W; Ruby R; Otis B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):552-61. PubMed ID: 20211770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermo-elastic gigahertz-frequency oscillator through surface acoustic wave-silicon photonics.
    Priel M; Kumar Bag S; Slook M; Dokhanian L; Shafir I; Hen M; Katzman M; Grunwald E; Munk D; Feldberg M; Sharabani T; Inbar N; Bashan G; Zadok A
    Opt Express; 2023 Jan; 31(1):684-697. PubMed ID: 36607002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feed-forward true carrier extraction of high baud rate phase shift keyed signals using photonic modulation stripping and low-bandwidth electronics.
    Slavík R; Kakande J; Richardson DJ
    Opt Express; 2011 Dec; 19(27):26594-9. PubMed ID: 22274243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.