BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18267675)

  • 1. Thickness measurement of a thin-film layer on an anisotropic substrate by phase-sensitive acoustic microscope.
    Sasaki Y; Endo T; Yamagishi T; Sakai M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(5):638-42. PubMed ID: 18267675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of periodic surface roughness on V(z) curves for the line-focus acoustic microscope.
    Li ZL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(6):680-6. PubMed ID: 18263234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of surface acoustic wave velocity using a variable-line-focus polyurea thin-film ultrasonic transducer.
    Aoyagi T; Nakazawa M; Tabaru M; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1761-8. PubMed ID: 19686992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneously measuring thickness, density, velocity and attenuation of thin layers using V(z,t) data from time-resolved acoustic microscopy.
    Chen J; Bai X; Yang K; Ju BF
    Ultrasonics; 2015 Feb; 56():505-11. PubMed ID: 25448428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angular measurement of acoustic reflection coefficients by the inversion of V(z, t) data with high frequency time-resolved acoustic microscopy.
    Chen J; Bai X; Yang K; Ju BF
    Rev Sci Instrum; 2012 Jan; 83(1):014901. PubMed ID: 22299973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of a damaged layer thickness with reflection acoustic microscope.
    Ishikawa I; Kanda H; Katakura K; Semba T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(6):587-92. PubMed ID: 18290238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of material elastic constants of trabecular bone: a micromechanical analytic study using a 1 GHz acoustic microscope.
    Jørgensen CS; Kundu T
    J Orthop Res; 2002 Jan; 20(1):151-8. PubMed ID: 11853082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of interdigital transducer sensors for non-destructive characterization of thin films using high frequency Rayleigh waves.
    Deboucq J; Duquennoy M; Ouaftouh M; Jenot F; Carlier J; Ourak M
    Rev Sci Instrum; 2011 Jun; 82(6):064905. PubMed ID: 21721722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitation of plate waves in thickness measurements of layers deposited on thin plates.
    Tsukahara Y; Nakaso N; Kushibiki JI; Chubachi N
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(6):638-42. PubMed ID: 18290244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of anisotropy sensitivity in the scanning acoustic microscope.
    Atalar A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(2):264-73. PubMed ID: 18284977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the multiple local properties of thin layer with high lateral resolution by scanning acoustic microscopy.
    Bai X; Sun Z; Sun A; Chen J; Ju BF
    Rev Sci Instrum; 2014 Sep; 85(9):094901. PubMed ID: 25273758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of reflected waves from the back surface of thin solid-plate specimen on velocity measurements by line-focus-beam acoustic microscopy.
    Kushibiki JI; Ohashi Y; Arakawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):274-84. PubMed ID: 18238540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser generated guided waves and finite element modeling for the thickness gauging of thin layers.
    Lefevre F; Jenot F; Ouaftouh M; Duquennoy M; Ourak M
    Rev Sci Instrum; 2010 Mar; 81(3):034901. PubMed ID: 20370206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase diagrams of nonionic foam films: construction by means of disjoining pressure versus thickness curves.
    Stubenrauch C; Kashchiev D; Strey R
    J Colloid Interface Sci; 2004 Dec; 280(1):244-55. PubMed ID: 15476796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell property determination from the acoustic microscope generated voltage versus frequency curves.
    Kundu T; Bereiter-Hahn J; Karl I
    Biophys J; 2000 May; 78(5):2270-9. PubMed ID: 10777725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental study of construction mechanism of V(z) curves obtained by line-focus-beam acoustic microscopy.
    Ono Y; Kushibiki J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(4):1042-50. PubMed ID: 18238639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional analysis of the effect of an electrode layer on surface acoustic waves in a finite anisotropic plate.
    Wang J; Du J; Li Z; Lin J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e935-9. PubMed ID: 16814834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thin-film characterization using a scanning laser acoustic microscope with surface acoustic waves.
    Robbins WP; Mueller RK; Rudd E
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(4):477-83. PubMed ID: 18290177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Principal surface wave velocities in the point focus acoustic materials signature V(z) of an anisotropic solid.
    Every AG; Deschamps M
    Ultrasonics; 2003 Sep; 41(7):581-91. PubMed ID: 12919694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.